Advanced Soft Computing Techniques for Monthly Streamflow Prediction in Seasonal Rivers

dc.contributor.authorMohammed Achite
dc.contributor.authorOkan Mert Katipoğlu
dc.contributor.authorVeysi Kartal
dc.contributor.authorMetin Sarıgöl
dc.contributor.authorMuhammad Jehanzaib
dc.contributor.authorEnes Gül
dc.date.accessioned2025-02-03T07:43:18Z
dc.date.available2025-02-03T07:43:18Z
dc.date.issued2025-01-19
dc.departmentFakülteler, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümü
dc.description.abstractThe rising incidence of droughts in specific global regions in recent years, primarily attributed to global warming, has markedly increased the demand for reliable and accurate streamflow estimation. Streamflow estimation is essential for the effective management and utilization of water resources, as well as for the design of hydraulic infrastructure. Furthermore, research on streamflow estimation has gained heightened importance because water is essential not only for the survival of all living organisms but also for determining the quality of life on Earth. In this study, advanced soft computing techniques, including long short-term memory (LSTM), convolutional neural network–recurrent neural network (CNN-RNN), and group method of data handling (GMDH) algorithms, were employed to forecast monthly streamflow time series at two different stations in the Wadi Mina basin. The performance of each technique was evaluated using statistical criteria such as mean square error (MSE), mean bias error (MBE), mean absolute error (MAE), and the correlation coefficient (R). The results of this study demonstrated that the GMDH algorithm produced the most accurate forecasts at the Sidi AEK Djillali station, with metrics of MSE: 0.132, MAE: 0.185, MBE: −0.008, and R: 0.636. Similarly, the CNN-RNN algorithm achieved the best performance at the Kef Mehboula station, with metrics of MSE: 0.298, MAE: 0.335, MBE: −0.018, and R: 0.597.
dc.identifier.citationAchite, M., Katipoğlu, O. M., Kartal, V., Sarıgöl, M., Jehanzaib, M., & Gül, E. (2025). Advanced Soft Computing Techniques for Monthly Streamflow Prediction in Seasonal Rivers. Atmosphere, 16(1), 106.
dc.identifier.doi10.3390/atmos16010106
dc.identifier.issn2073-4433
dc.identifier.issue1
dc.identifier.scopus2-s2.0-85216028064
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.3390/atmos16010106
dc.identifier.urihttps://hdl.handle.net/20.500.12604/8483
dc.identifier.volume16
dc.identifier.wosWOS:001404024000001
dc.identifier.wosqualityQ3
dc.indekslendigikaynakScopus
dc.indekslendigikaynakWeb of Science
dc.institutionauthorKartal, Veysi
dc.institutionauthorid0000-0003-4671-1281
dc.language.isoen
dc.publisherMDPI AG
dc.relation.ispartofAtmosphere
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectdeep learning
dc.subjectdrought
dc.subjectGMDH
dc.subjectprediction
dc.subjectsoft computing
dc.subjectstreamflow
dc.titleAdvanced Soft Computing Techniques for Monthly Streamflow Prediction in Seasonal Rivers
dc.typejournal-article
oaire.citation.issue1
oaire.citation.volume16

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
Veysi-Kartal-2025.pdf
Boyut:
5.53 MB
Biçim:
Adobe Portable Document Format
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.17 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: