A fractal fractional model for computer virus dynamics

dc.authoridRafiq, Muhammad/0000-0002-2165-3479
dc.authoridIqbal, Muhammad Sajid/0000-0001-6929-8093
dc.authoridRaza, Ali/0000-0002-6443-9966
dc.contributor.authorAkgul, Ali
dc.contributor.authorFatima, Umbreen
dc.contributor.authorIqbal, Muhammad Sajid
dc.contributor.authorAhmed, Nauman
dc.contributor.authorRaza, Ali
dc.contributor.authorIqbal, Zafar
dc.contributor.authorRafiq, Muhammad
dc.date.accessioned2024-12-24T19:25:26Z
dc.date.available2024-12-24T19:25:26Z
dc.date.issued2021
dc.departmentSiirt Üniversitesi
dc.description.abstractThe gist behind this study is to extend the classical computer virus model into fractal fractional model and subsequently to solve the model by Atangana-Toufik method. This method solve nonlinear model under consideration very efficiently. We use the Mittag-Leffler kernels on the proposed model. Atangana-Baleanu integral operator is used to solve the set of fractal-fractional expressions. In this model, three types of equilibrium points are described i.e trivial, virus free and virus existing points. These fixed points are used to establish some standard results to discuss the stability of the system by calculating the Jacobian matrices at these points. Routh-Hurwitz criteria is used to verify that the system is locally asymptotically stable at all the steady states. The emphatic role of the basic reproduction number R-0 is also brought into lime light for stability analysis. Sensitivity analysis of R-0 is also discussed. Optimal existence and uniqueness of the solution is the nucleus of this study. Computer simulations and patterns and graphical patterns illustrate reliability and productiveness of the proposed method. (C) 2021 Elsevier Ltd. All rights reserved.
dc.identifier.doi10.1016/j.chaos.2021.110947
dc.identifier.issn0960-0779
dc.identifier.issn1873-2887
dc.identifier.scopus2-s2.0-85104957038
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.chaos.2021.110947
dc.identifier.urihttps://hdl.handle.net/20.500.12604/6411
dc.identifier.volume147
dc.identifier.wosWOS:000663440600018
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherPergamon-Elsevier Science Ltd
dc.relation.ispartofChaos Solitons & Fractals
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_20241222
dc.subjectFractal fractional derivatives
dc.subjectComputer model
dc.subjectStability analysis
dc.subjectNumerical technique
dc.titleA fractal fractional model for computer virus dynamics
dc.typeArticle

Dosyalar