A fractal fractional model for computer virus dynamics

[ X ]

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Pergamon-Elsevier Science Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

The gist behind this study is to extend the classical computer virus model into fractal fractional model and subsequently to solve the model by Atangana-Toufik method. This method solve nonlinear model under consideration very efficiently. We use the Mittag-Leffler kernels on the proposed model. Atangana-Baleanu integral operator is used to solve the set of fractal-fractional expressions. In this model, three types of equilibrium points are described i.e trivial, virus free and virus existing points. These fixed points are used to establish some standard results to discuss the stability of the system by calculating the Jacobian matrices at these points. Routh-Hurwitz criteria is used to verify that the system is locally asymptotically stable at all the steady states. The emphatic role of the basic reproduction number R-0 is also brought into lime light for stability analysis. Sensitivity analysis of R-0 is also discussed. Optimal existence and uniqueness of the solution is the nucleus of this study. Computer simulations and patterns and graphical patterns illustrate reliability and productiveness of the proposed method. (C) 2021 Elsevier Ltd. All rights reserved.

Açıklama

Anahtar Kelimeler

Fractal fractional derivatives, Computer model, Stability analysis, Numerical technique

Kaynak

Chaos Solitons & Fractals

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

147

Sayı

Künye