New applications related to Covid-19
dc.authorid | Raza, Ali/0000-0002-6443-9966 | |
dc.authorid | Rafiq, Muhammad/0000-0002-2165-3479 | |
dc.contributor.author | Akgul, Ali | |
dc.contributor.author | Ahmed, Nauman | |
dc.contributor.author | Raza, Ali | |
dc.contributor.author | Iqbal, Zafar | |
dc.contributor.author | Rafiq, Muhammad | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Rehman, Muhammad Aziz-ur | |
dc.date.accessioned | 2024-12-24T19:27:36Z | |
dc.date.available | 2024-12-24T19:27:36Z | |
dc.date.issued | 2021 | |
dc.department | Siirt Üniversitesi | |
dc.description.abstract | Analysis of mathematical models projected for COVID-19 presents in many valuable outputs. We analyze a model of differential equation related to Covid-19 in this paper. We use fractal-fractional derivatives in the proposed model. We analyze the equilibria of the model. We discuss the stability analysis in details. We apply very effective method to obtain the numerical results. We demonstrate our results by the numerical simulations. | |
dc.identifier.doi | 10.1016/j.rinp.2020.103663 | |
dc.identifier.issn | 2211-3797 | |
dc.identifier.pmid | 33362986 | |
dc.identifier.scopus | 2-s2.0-85098733381 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://doi.org/10.1016/j.rinp.2020.103663 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12604/6721 | |
dc.identifier.volume | 20 | |
dc.identifier.wos | WOS:000614830200006 | |
dc.identifier.wosquality | Q2 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.indekslendigikaynak | PubMed | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.relation.ispartof | Results in Physics | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.snmz | KA_20241222 | |
dc.subject | Covid-19 | |
dc.subject | Fractal fractional derivative | |
dc.subject | Stability analysis | |
dc.subject | Numerical simulations | |
dc.title | New applications related to Covid-19 | |
dc.type | Article |