Computational examination of Jeffrey nanofluid through a stretchable surface employing Tiwari and Das model

dc.authoridSafdar, Rabia/0000-0003-3197-7095
dc.authoridSaleel, C Ahamed/0000-0003-3705-4371
dc.authoridSHAHZAD, Dr MUHAMMAD FAISAL/0000-0001-6971-9177
dc.authoridshahzad, faisal/0000-0002-0188-5133
dc.authoridkoulali, Aimad/0000-0003-0996-8221
dc.contributor.authorShahzad, Faisal
dc.contributor.authorJamshed, Wasim
dc.contributor.authorKoulali, Aimad
dc.contributor.authorAissa, Abederrahmane
dc.contributor.authorSafdar, Rabia
dc.contributor.authorAkgul, Esra Karatas
dc.contributor.authorIbrahim, Rabha W.
dc.date.accessioned2024-12-24T19:30:07Z
dc.date.available2024-12-24T19:30:07Z
dc.date.issued2021
dc.departmentSiirt Üniversitesi
dc.description.abstractIn this research, we analyze the magnetohydrodynamics heat act of a viscous incompressible Jeffrey nanoliquid, which passed in the neighborhood of a linearly extending foil. As a process, we employ alumina (Al2O3) as nanoparticles, assuming that the base fluid is ethylene glycol. In this involvement, we consider the heating by Joule effect and viscous dissipation. We select the passable transformations, motion, and temperature formulas converting into non-linear differential equation arrangement. We solved the system by using a Keller-box method. Then, we provide a graphical description of outcomes according to the selected control parameters. Higher values of dissipation parameter cause a surge in temperature field as well as strengthen width of the heat boundary layer. The velocity, drag coefficient, and heat transfer (HT) rate for the base fluid are comparatively greater than that of the Al2O3-ethylene glycol nanofluid, although the temperature is embellished by the inclusion of nanoparticles. Moreover, we report depreciation in surface drag as well as HT by the virtue of amplification in the Deborah number. The proclaimed outcomes are advantageous to boost the incandescent light bulb's, cooling and heating processes, filament emitting light, energy generation, multiple heating devices, etc.
dc.description.sponsorshipDeanship of Scientific Research at King Khalid University [R.G.P 2/74/41]
dc.description.sponsorshipThe authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through research group program under grant number R.G.P 2/74/41.
dc.identifier.doi10.1515/phys-2021-0083
dc.identifier.endpage911
dc.identifier.issn2391-5471
dc.identifier.issue1
dc.identifier.scopus2-s2.0-85124139114
dc.identifier.scopusqualityQ2
dc.identifier.startpage897
dc.identifier.urihttps://doi.org/10.1515/phys-2021-0083
dc.identifier.urihttps://hdl.handle.net/20.500.12604/7404
dc.identifier.volume19
dc.identifier.wosWOS:000747992200001
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherDe Gruyter Poland Sp Z O O
dc.relation.ispartofOpen Physics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_20241222
dc.subjectalumina nanoparticles
dc.subjectmagnetic field
dc.subjectKeller-box method
dc.subjectstretching sheet
dc.subjectviscous dissipation
dc.titleComputational examination of Jeffrey nanofluid through a stretchable surface employing Tiwari and Das model
dc.typeArticle

Files