Computational examination of Jeffrey nanofluid through a stretchable surface employing Tiwari and Das model
[ X ]
Tarih
2021
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
De Gruyter Poland Sp Z O O
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
In this research, we analyze the magnetohydrodynamics heat act of a viscous incompressible Jeffrey nanoliquid, which passed in the neighborhood of a linearly extending foil. As a process, we employ alumina (Al2O3) as nanoparticles, assuming that the base fluid is ethylene glycol. In this involvement, we consider the heating by Joule effect and viscous dissipation. We select the passable transformations, motion, and temperature formulas converting into non-linear differential equation arrangement. We solved the system by using a Keller-box method. Then, we provide a graphical description of outcomes according to the selected control parameters. Higher values of dissipation parameter cause a surge in temperature field as well as strengthen width of the heat boundary layer. The velocity, drag coefficient, and heat transfer (HT) rate for the base fluid are comparatively greater than that of the Al2O3-ethylene glycol nanofluid, although the temperature is embellished by the inclusion of nanoparticles. Moreover, we report depreciation in surface drag as well as HT by the virtue of amplification in the Deborah number. The proclaimed outcomes are advantageous to boost the incandescent light bulb's, cooling and heating processes, filament emitting light, energy generation, multiple heating devices, etc.
Açıklama
Anahtar Kelimeler
alumina nanoparticles, magnetic field, Keller-box method, stretching sheet, viscous dissipation
Kaynak
Open Physics
WoS Q Değeri
Q3
Scopus Q Değeri
Q2
Cilt
19
Sayı
1