Theoretical investigation on fractal–fractional nonlinear ordinary differential equations

dc.authoridhttps://orcid.org/0000-0002-7698-0709
dc.contributor.authorAbdon Atangana
dc.contributor.authorSeda İğret Araz
dc.date.accessioned2025-01-13T08:33:49Z
dc.date.available2025-01-13T08:33:49Z
dc.date.issued2025-08
dc.departmentFakülteler, Eğitim Fakültesi, Matematik ve Fen Bilimleri Eğitimi Bölümü
dc.description.abstractIn this study, we examine the existence and uniqueness conditions of the solutions of the nonlinear fractal-fractional differential equations. Particular emphasis is placed on four cases: exponential decay, power law, generalized Mittag-Leffler kernels and the Delta-Dirac function. Our first contribution is the formulation of some basic inequalities inspired from Gronwall inequality setting up a solid foundation for our analysis to follow. We subsequently carefully obtain the maximal and minimal solutions in each scenario, providing a complete picture of their structure. Finally we show convergence of four different successive approximation schemes, validating their applicability in the various contexts. This is an important finding that adds to the growing literature on the use of fractional calculus in complex dynamical systems.
dc.identifier.citationAtangana, A., & Araz, S. İ. (2025). Theoretical investigation on fractal–fractional nonlinear ordinary differential equations. Nonlinear Analysis: Real World Applications, 84, 104296.
dc.identifier.doi10.1016/j.nonrwa.2024.104296
dc.identifier.issnhttps://10.1016/j.nonrwa.2024.104296
dc.identifier.issn1468-1218
dc.identifier.scopus2-s2.0-85214260423
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://hdl.handle.net/20.500.12604/8437
dc.identifier.volume84
dc.identifier.wosqualityQ1
dc.institutionauthorİğret Araz, Seda
dc.institutionauthoridhttps://orcid.org/0000-0002-7698-0709
dc.language.isoen
dc.publisherElsevier BV
dc.relation.ispartofNonlinear Analysis: Real World Applications
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectFractal–fractional differentiation and integration
dc.subjectInequalities
dc.subjectMaximal and minimal solutions
dc.subjectSuccessive approximation
dc.titleTheoretical investigation on fractal–fractional nonlinear ordinary differential equations
dc.typejournal-article
oaire.citation.volume84

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Seda-İğret Araz.pdf
Boyut:
777.34 KB
Biçim:
Adobe Portable Document Format
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.17 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: