A plethora of novel solitary wave solutions related to van der Waals equation: a comparative study

dc.contributor.authorButt, Asma Rashid
dc.contributor.authorJhangeer, Adil
dc.contributor.authorAkgul, Ali
dc.contributor.authorHassani, Murad Khan
dc.date.accessioned2024-12-24T19:27:58Z
dc.date.available2024-12-24T19:27:58Z
dc.date.issued2024
dc.departmentSiirt Üniversitesi
dc.description.abstractIn this article, we explore exact solitary wave solutions to the van der Waals equation which is crucial for numerous applications involving a variety of physical occurrences. This system is used to define the behavior of real gases taking into consideration finite size of molecules and also has some applications in industry for granular materials. The model is studied under the effect of fractional derivatives by employing two different definitions: beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document}, and M-truncated. Further, new extended direct algebraic method is employed to construct the solitary wave solutions for the model. The solutions transmit several novel solutions, such as dark-singular, dark-bright, singular-periodic and dark solutions, and this method establishes the conditions required for the formation of these structures. To show the comparative analysis between two different fractional operators, results are graphically represented in the form of 2-dimensional and 3-dimensional visualizations.
dc.description.sponsorshipEuropean Union [CZ.10.03.01/00/22_003/0000048\, 10.03.01/00/22\_003/0000048]
dc.description.sponsorshipThis article has been produced with the financial support of the European Union under the REFRESH-Research Excellence For Regional Sustainability and High-tech Industries project number CZ.10.03.01/00/22_003/0000048\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$. 10.03.01/00/22\_003/0000048$$\end{document}
dc.identifier.doi10.1038/s41598-024-65218-7
dc.identifier.issn2045-2322
dc.identifier.issue1
dc.identifier.pmid39289413
dc.identifier.scopus2-s2.0-85204311268
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1038/s41598-024-65218-7
dc.identifier.urihttps://hdl.handle.net/20.500.12604/6858
dc.identifier.volume14
dc.identifier.wosWOS:001317187900004
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.indekslendigikaynakPubMed
dc.language.isoen
dc.publisherNature Portfolio
dc.relation.ispartofScientific Reports
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_20241222
dc.subjectVan der Waals equation
dc.subjectSoliton solutions
dc.subjectM-truncated derivative
dc.subjectBeta-derivative
dc.subjectFractional wave transform
dc.subjectNew extended direct algebraic method
dc.titleA plethora of novel solitary wave solutions related to van der Waals equation: a comparative study
dc.typeArticle

Dosyalar