A plethora of novel solitary wave solutions related to van der Waals equation: a comparative study
dc.contributor.author | Butt, Asma Rashid | |
dc.contributor.author | Jhangeer, Adil | |
dc.contributor.author | Akgul, Ali | |
dc.contributor.author | Hassani, Murad Khan | |
dc.date.accessioned | 2024-12-24T19:27:58Z | |
dc.date.available | 2024-12-24T19:27:58Z | |
dc.date.issued | 2024 | |
dc.department | Siirt Üniversitesi | |
dc.description.abstract | In this article, we explore exact solitary wave solutions to the van der Waals equation which is crucial for numerous applications involving a variety of physical occurrences. This system is used to define the behavior of real gases taking into consideration finite size of molecules and also has some applications in industry for granular materials. The model is studied under the effect of fractional derivatives by employing two different definitions: beta\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta$$\end{document}, and M-truncated. Further, new extended direct algebraic method is employed to construct the solitary wave solutions for the model. The solutions transmit several novel solutions, such as dark-singular, dark-bright, singular-periodic and dark solutions, and this method establishes the conditions required for the formation of these structures. To show the comparative analysis between two different fractional operators, results are graphically represented in the form of 2-dimensional and 3-dimensional visualizations. | |
dc.description.sponsorship | European Union [CZ.10.03.01/00/22_003/0000048\, 10.03.01/00/22\_003/0000048] | |
dc.description.sponsorship | This article has been produced with the financial support of the European Union under the REFRESH-Research Excellence For Regional Sustainability and High-tech Industries project number CZ.10.03.01/00/22_003/0000048\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$. 10.03.01/00/22\_003/0000048$$\end{document} | |
dc.identifier.doi | 10.1038/s41598-024-65218-7 | |
dc.identifier.issn | 2045-2322 | |
dc.identifier.issue | 1 | |
dc.identifier.pmid | 39289413 | |
dc.identifier.scopus | 2-s2.0-85204311268 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://doi.org/10.1038/s41598-024-65218-7 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12604/6858 | |
dc.identifier.volume | 14 | |
dc.identifier.wos | WOS:001317187900004 | |
dc.identifier.wosquality | N/A | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.indekslendigikaynak | PubMed | |
dc.language.iso | en | |
dc.publisher | Nature Portfolio | |
dc.relation.ispartof | Scientific Reports | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.snmz | KA_20241222 | |
dc.subject | Van der Waals equation | |
dc.subject | Soliton solutions | |
dc.subject | M-truncated derivative | |
dc.subject | Beta-derivative | |
dc.subject | Fractional wave transform | |
dc.subject | New extended direct algebraic method | |
dc.title | A plethora of novel solitary wave solutions related to van der Waals equation: a comparative study | |
dc.type | Article |