Cholera disease dynamics with vaccination control using delay differential equation

[ X ]

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Nature Portfolio

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

The COVID-19 pandemic came with many setbacks, be it to a country's economy or the global missions of organizations like WHO, UNICEF or GTFCC. One of the setbacks is the rise in cholera cases in developing countries due to the lack of cholera vaccination. This model suggested a solution by introducing another public intervention, such as adding Chlorine to water bodies and vaccination. A novel delay differential model of fractional order was recommended, with two different delays, one representing the latent period of the disease and the other being the delay in adding a disinfectant to the aquatic environment. This model also takes into account the population that will receive a vaccination. This study utilized sensitivity analysis of reproduction number to analytically prove the effectiveness of control measures in preventing the spread of the disease. This analysis provided the mathematical evidence for adding disinfectants in water bodies and inoculating susceptible individuals. The stability of the equilibrium points has been discussed. The existence of stability switching curves is determined. Numerical simulation showed the effect of delay, resulting in fluctuations in some compartments. It also depicted the impact of the order of derivative on the oscillations.

Açıklama

Anahtar Kelimeler

Cholera, delay differential equation, Stability analysis, Sensitivity analysis, Bifurcation analysis, Predictor-corrector method, Caputo derivative

Kaynak

Scientific Reports

WoS Q Değeri

N/A

Scopus Q Değeri

Q1

Cilt

14

Sayı

1

Künye