Exploring the integration of thermal imaging technology with the data mining algorithms for precise prediction of honey and beeswax yield

[ X ]

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Wiley

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

Sustainability in beekeeping depends on identifying the factors affecting honey and beeswax yields (HY and BWY) - key products - and accurately predicting these yields. Therefore, this study aimed to predict HY and BWY using a classification and regression tree (CART), eXtreme Gradient Boosting (XGBoost) and Random Forest (RF) algorithms, and thermal image processing in Apis mellifera. In this study, 13 colonies of 6 different breeds raised in 10-frame Langstroth hives were used. The effects of independent variables were predicted using data mining algorithms and 15 performance metrics for the effectiveness of the algorithms. Colony power (CP), thermal temperatures (Tmin, Tmax, and Tmean), breed, a*, b*, red, green, saturation, and brightness impacted HY and BWY in different algorithms, but not birth year of queen, L, hue and blue. As a result, XGBoost, CART, and RF demonstrated high predictive performance, respectively. Due to their higher predictive performance, XGBoost and CART algorithms could predict HY and BWY using CP, thermal temperatures, and image values. These techniques could be useful for producers to monitor production quickly and non-invasively without threatening colony welfare.

Açıklama

Anahtar Kelimeler

CART, honey, random forest, thermal imaging, XGBoost

Kaynak

Animal Science Journal

WoS Q Değeri

N/A

Scopus Q Değeri

Q1

Cilt

95

Sayı

1

Künye