A study of fractional order Ambartsumian equation involving exponential decay kernel
dc.authorid | Ullah, Aman/0000-0003-4021-3599 | |
dc.authorid | Ahmad, Shabir/0000-0002-5610-6248 | |
dc.authorid | de la Sen, manuel/0000-0001-9320-9433 | |
dc.contributor.author | Ahmad, Shabir | |
dc.contributor.author | Ullah, Aman | |
dc.contributor.author | Akgul, Ali | |
dc.contributor.author | De la Sen, Manuel | |
dc.date.accessioned | 2024-12-24T19:33:59Z | |
dc.date.available | 2024-12-24T19:33:59Z | |
dc.date.issued | 2021 | |
dc.department | Siirt Üniversitesi | |
dc.description.abstract | Recently, non-singular fractional operators have a significant role in the modeling of real-world problems. Specifically, the Caputo-Fabrizio operators are used to study better dynamics of memory processes. In this paper, under the non-singular fractional operator with exponential decay kernel, we analyze the Ambartsumian equation qualitatively and computationally. We deduce the result of the existence of at least one solution to the proposed equation through Krasnoselskii's fixed point theorem. Also, we utilize the Banach fixed point theorem to derive the result concerned with unique solution. We use the concept of functional analysis to show that the proposed equation is Ulam-Hyers and Ulam-Hyers-Rassias stable. We use an efficient analytical approach to compute a semi-analytical solution to the proposed problem. The convergence of the series solution to an exact solution is proved through non-linear analysis. Lastly, we present the solution for different fractional orders. | |
dc.description.sponsorship | Basque Government [IT120719] | |
dc.description.sponsorship | The authors are grateful to the Basque Government by Grant IT120719. | |
dc.identifier.doi | 10.3934/math.2021580 | |
dc.identifier.endpage | 9997 | |
dc.identifier.issn | 2473-6988 | |
dc.identifier.issue | 9 | |
dc.identifier.scopus | 2-s2.0-85109010978 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 9981 | |
dc.identifier.uri | https://doi.org/10.3934/math.2021580 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12604/8370 | |
dc.identifier.volume | 6 | |
dc.identifier.wos | WOS:000683418700028 | |
dc.identifier.wosquality | Q1 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | |
dc.publisher | Amer Inst Mathematical Sciences-Aims | |
dc.relation.ispartof | Aims Mathematics | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.snmz | KA_20241222 | |
dc.subject | Ambartsumian equation | |
dc.subject | Ulam-Hyres-Rassias stable | |
dc.subject | non-linear analysis | |
dc.title | A study of fractional order Ambartsumian equation involving exponential decay kernel | |
dc.type | Article |