A study of fractional order Ambartsumian equation involving exponential decay kernel

[ X ]

Tarih

2021

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Amer Inst Mathematical Sciences-Aims

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

Recently, non-singular fractional operators have a significant role in the modeling of real-world problems. Specifically, the Caputo-Fabrizio operators are used to study better dynamics of memory processes. In this paper, under the non-singular fractional operator with exponential decay kernel, we analyze the Ambartsumian equation qualitatively and computationally. We deduce the result of the existence of at least one solution to the proposed equation through Krasnoselskii's fixed point theorem. Also, we utilize the Banach fixed point theorem to derive the result concerned with unique solution. We use the concept of functional analysis to show that the proposed equation is Ulam-Hyers and Ulam-Hyers-Rassias stable. We use an efficient analytical approach to compute a semi-analytical solution to the proposed problem. The convergence of the series solution to an exact solution is proved through non-linear analysis. Lastly, we present the solution for different fractional orders.

Açıklama

Anahtar Kelimeler

Ambartsumian equation, Ulam-Hyres-Rassias stable, non-linear analysis

Kaynak

Aims Mathematics

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

6

Sayı

9

Künye