A study of fractional order Ambartsumian equation involving exponential decay kernel
[ X ]
Tarih
2021
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Amer Inst Mathematical Sciences-Aims
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Recently, non-singular fractional operators have a significant role in the modeling of real-world problems. Specifically, the Caputo-Fabrizio operators are used to study better dynamics of memory processes. In this paper, under the non-singular fractional operator with exponential decay kernel, we analyze the Ambartsumian equation qualitatively and computationally. We deduce the result of the existence of at least one solution to the proposed equation through Krasnoselskii's fixed point theorem. Also, we utilize the Banach fixed point theorem to derive the result concerned with unique solution. We use the concept of functional analysis to show that the proposed equation is Ulam-Hyers and Ulam-Hyers-Rassias stable. We use an efficient analytical approach to compute a semi-analytical solution to the proposed problem. The convergence of the series solution to an exact solution is proved through non-linear analysis. Lastly, we present the solution for different fractional orders.
Açıklama
Anahtar Kelimeler
Ambartsumian equation, Ulam-Hyres-Rassias stable, non-linear analysis
Kaynak
Aims Mathematics
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
6
Sayı
9