Micropolar fluid past a convectively heated surface embedded with nth order chemical reaction and heat source/sink

dc.authoridGoodarzi, Marjan/0000-0002-1285-0593
dc.authoridshahzad, faisal/0000-0002-0188-5133
dc.authoridSHAHZAD, Dr MUHAMMAD FAISAL/0000-0001-6971-9177
dc.authorid, Hashim/0000-0002-9899-866X
dc.authoridNisar, Prof. Kottakkaran Sooppy/0000-0001-5769-4320
dc.authoridsajid, tanveer/0000-0001-6130-3660
dc.authoridKaratas Akgul, Esra/0000-0003-3205-2393
dc.contributor.authorSajid, Tanveer
dc.contributor.authorJamshed, Wasim
dc.contributor.authorShahzad, Faisal
dc.contributor.authorEid, Mohamed R.
dc.contributor.authorAlshehri, Hashim M.
dc.contributor.authorGoodarzi, Marjan
dc.contributor.authorKaratas Akgul, Esra
dc.date.accessioned2024-12-24T19:28:28Z
dc.date.available2024-12-24T19:28:28Z
dc.date.issued2021
dc.departmentSiirt Üniversitesi
dc.description.abstractThe objective of the present article is to investigate an incompressible micropolar Prandtl fluid flowing over a porous stretching sheet with the inclusion of effects like exponential temperature-dependent heat source, higher-order chemical reaction viscous dissipation, nonlinear thermal radiation, and multiple convective surface boundary conditions. The nonlinear partial differential equations (PDEs) for momentum, energy, micro-rotation, and concentration are discussed. These PDEs are converted into ordinary differential equations (ODEs) by utilizing suitable variables and then tackled with the utilization of the nonlinear shooting method. For the numerical assessment of upcoming results comparison with already existing literature has been taken. It is canvassed that by augmenting the microrotation parameter, a boost in the angular velocity profile is seen. Moreover, The higher order of reactivity upsurges the heat transmission rate, whilst the mass convection enhances the concentration size. This gives the current model potency as a potential application in clean engine lubricants and coolant industrial liquids under the same constraints.
dc.identifier.doi10.1088/1402-4896/ac0f3e
dc.identifier.issn0031-8949
dc.identifier.issn1402-4896
dc.identifier.issue10
dc.identifier.scopus2-s2.0-85109105563
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1088/1402-4896/ac0f3e
dc.identifier.urihttps://hdl.handle.net/20.500.12604/7077
dc.identifier.volume96
dc.identifier.wosWOS:000670762900001
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherIop Publishing Ltd
dc.relation.ispartofPhysica Scripta
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_20241222
dc.subjectchemical reaction
dc.subjectconvection
dc.subjectmicropolar
dc.subjectnonlinear thermal radiation
dc.subjectporosity
dc.titleMicropolar fluid past a convectively heated surface embedded with nth order chemical reaction and heat source/sink
dc.typeArticle

Dosyalar