EXISTENCE AND STABILITY RESULTS OF FRACTIONAL DIFFERENTIAL EQUATIONS MITTAG-LEFFLER KERNEL
[ X ]
Tarih
2024
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
World Scientific Publ Co Pte Ltd
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
This paper presents the following AB-Caputo fractional boundary value problem (ABC)(0)D(alpha)u(sigma) = G(sigma, u(sigma)), sigma is an element of[0, 1] with integral-type boundary conditions u(0) = 0 = u ''(0), gamma u(1) = lambda integral(1)(0) g(1)(kappa)u(kappa)d kappa, of order 2 < alpha <= 3. Schauder and Krasnoselskii's fixed point theorems are used to find existence results. Uniqueness is obtained via the Banach contraction principle. To investigate the stability of a given problem, Hyers-Ulam stability is discussed. An example is provided to validate our results.
Açıklama
Anahtar Kelimeler
AB-Caputo Fractional BVP, Existence Results, Schauder Fixed Point Theorem, Uniqueness Krasnoselskii's Fixed Point Theorem, Banach Contraction Principle and Stability
Kaynak
Fractals-Complex Geometry Patterns and Scaling in Nature and Society
WoS Q Değeri
N/A
Scopus Q Değeri
Q1
Cilt
32
Sayı
07N08