EXISTENCE AND STABILITY RESULTS OF FRACTIONAL DIFFERENTIAL EQUATIONS MITTAG-LEFFLER KERNEL

[ X ]

Tarih

2024

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

World Scientific Publ Co Pte Ltd

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

This paper presents the following AB-Caputo fractional boundary value problem (ABC)(0)D(alpha)u(sigma) = G(sigma, u(sigma)), sigma is an element of[0, 1] with integral-type boundary conditions u(0) = 0 = u ''(0), gamma u(1) = lambda integral(1)(0) g(1)(kappa)u(kappa)d kappa, of order 2 < alpha <= 3. Schauder and Krasnoselskii's fixed point theorems are used to find existence results. Uniqueness is obtained via the Banach contraction principle. To investigate the stability of a given problem, Hyers-Ulam stability is discussed. An example is provided to validate our results.

Açıklama

Anahtar Kelimeler

AB-Caputo Fractional BVP, Existence Results, Schauder Fixed Point Theorem, Uniqueness Krasnoselskii's Fixed Point Theorem, Banach Contraction Principle and Stability

Kaynak

Fractals-Complex Geometry Patterns and Scaling in Nature and Society

WoS Q Değeri

N/A

Scopus Q Değeri

Q1

Cilt

32

Sayı

07N08

Künye