A new plentiful solutions for nanosolitons of ionic (NSIW) waves spread the length of microtubules in (MLC) living cells
[ X ]
Dosyalar
Tarih
2025-02-20
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer Science and Business Media LLC
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
This article describes the developed Paul-Painlike method (PPM) to provide striking ODE of the nanosoliton of the ionic waves (NSIW) that spread the length of microtubules in live cells. Furthermore, Auxiliary Equation Approach (AEA) and Sardar Sub Equation Approach (SSEA) have been utilized similarly and concurrently to determine solutions for this particular model. In providing a physical explanation, various solitary wave structures are visually represented. These solutions include the anti-kink, kink shape, singular kink wave shape, and periodic bright, bright-dark and dark-singular soliton solution. Additionally, graphical illustrations (both 2-D and 3-D) demonstrate how the various parameters utilized affect the validity of analytical results. Furthermore, the uniqueness of the solutions we derived is highlighted by comparing the differences with earlier solutions of the model. The solutions produced may be beneficial in a number of significant investigations in medicine, as well as biology. The results demonstrate the effectiveness of the proposed techniques for determining many optical solitons of nonlinear evolution equations.
Açıklama
Anahtar Kelimeler
Extended auxiliary equation approach (AEA), Paul-painleve method (PPM), Sardar sub equation approach (SSEA).
Kaynak
Scientific Reports
WoS Q Değeri
Scopus Q Değeri
Cilt
15
Sayı
1
Künye
Ouahid, L., Abdou, M. A., Al Shahrani, J. S., Abdel-Baset, A. M., Akgül, A., & Hassani, M. K. (2025). A new plentiful solutions for nanosolitons of ionic (NSIW) waves spread the length of microtubules in (MLC) living cells. Scientific Reports, 15(1), 6190.