Numerical simulations of Darcy-forchheimer flow of radiative hybrid nanofluid with Lobatto-IIIa scheme configured by a stretching surface

dc.authoridAlharthi, Aiedh/0000-0002-4379-9532
dc.authoridHassan deif, Ahmed/0009-0002-7989-0466
dc.authoridHassan, Ahmed/0000-0002-1369-326X
dc.contributor.authorLi, Wei
dc.contributor.authorFarooq, Umar
dc.contributor.authorWaqas, Hassan
dc.contributor.authorAlharthi, Aiedh Mrisi
dc.contributor.authorFatima, Nahid
dc.contributor.authorHassan, Ahmed M.
dc.contributor.authorMuhammad, Taseer
dc.date.accessioned2024-12-24T19:27:00Z
dc.date.available2024-12-24T19:27:00Z
dc.date.issued2023
dc.departmentSiirt Üniversitesi
dc.description.abstractHeat transport and energy storage continue to be major issues for manufacturers and scientists. So far, the notion of novel heat transfer fluids has been developed, namely nanofluids and hybrid nanofluids. This investigation examines thermal radiation effect on heat transfer in MHD flow using the hybrid nanofluid. It examines a hybrid nanofluid (SWCNT-Al2O3/H2H6O2-H2O and MWCNT-CuO/H2H6O2-H2O) with H2O water base fluid nature passing through a starching surface with thermal radiation, Biot number and melting phenomena. The suitable similarity transformations are used to transmute the main governing system of equation PDEs and the appropriate boundary conditions for computation with the help of well-reputed shooting technique. The graphical and numerical outcomes against dissimilar flow parameters are computed by the mathematical software MATLAB. The velocity distribution profile is decreased by growing values of the Rotation parameter and porosity parameter. The velocity profile is enhanced by increasing the values of Darcy forchheimer medium. The thermal distribution field is enhanced by rising estimations of the thermal radiation parameter and Biot number. Temperature of the fluid is increasing due to increase in thermal conductivity parameter while decreasing due to increase in Marangoni ratio parameter. The present model hybrid nanofluid of heat transmission is evaluated to see if it has higher thermal energy storage efficiency than standard nanofluids. As a result, these novel findings in heat transport might be advantageous in dealing with energy storage issues in the modern technological environment.
dc.identifier.doi10.1016/j.csite.2023.103364
dc.identifier.issn2214-157X
dc.identifier.scopus2-s2.0-85166912893
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.csite.2023.103364
dc.identifier.urihttps://hdl.handle.net/20.500.12604/6449
dc.identifier.volume49
dc.identifier.wosWOS:001052041700001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofCase Studies in Thermal Engineering
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_20241222
dc.subjectHybrid nanofluid
dc.subject(H2O) water base fluid
dc.subjectThermal radiation
dc.subjectThermal conductivity
dc.subjectBvp4c
dc.subjectShooting method
dc.subject(SWCNT
dc.subjectMWCNT and CuO) nanoparticles
dc.titleNumerical simulations of Darcy-forchheimer flow of radiative hybrid nanofluid with Lobatto-IIIa scheme configured by a stretching surface
dc.typeArticle

Dosyalar