Utilization of In Situ FBRM and PVM Probes to Analyze the Influences of Monopropylene Glycol and Oleic Acid as Novel Additives on the Properties of Boric Acid Crystals

dc.authoridKUTLUAY, SINAN/0000-0001-9493-918X
dc.authoridKutluay, Sinan/0000-0002-4987-6789
dc.contributor.authorKutluay, Sinan
dc.contributor.authorCeyhan, A. Abdullah
dc.contributor.authorSahin, Omer
dc.contributor.authorIzgi, M. Sait
dc.date.accessioned2024-12-24T19:27:49Z
dc.date.available2024-12-24T19:27:49Z
dc.date.issued2020
dc.departmentSiirt Üniversitesi
dc.description.abstractThe aim of this study was to determine the influences of monopropylene glycol (MPG) and oleic acid (OA) as novel additives on the chord length distribution (CLD) and modification of the shape of boric acid crystals in real time with the use of in situ focused beam reflectance measurement (FBRM) and particle vision and measurement (PVM) probes, which were positioned on a continuous mixed-suspension mixed-product removal (CMSMPR) crystallizer at a steady-state value. In this context, the FBRM probe was used to monitor CLD, which is expressed as the cumulative undersize square-weight percentage distribution of boric acid crystals. CLD is statistically proportional to crystal size distribution. The shapes of the boric acid crystals were viewed in real time with an in situ PVM probe. In addition, a scanning electron microscope (SEM) and an optical microscope were used to characterize the shapes of the boric acid crystals produced in the CMSMPR crystallizer. The chemical structures of the boric acid crystals were characterized by Fourier transform infrared (FT-IR) analysis. The population density of the nuclei, the nucleation rate, and the growth rate of the boric acid crystals were also calculated. As a result, it was proved that industrial problems encountered in the production of boric acid crystals by the crystallization process were eliminated especially in the presence of 100 ppm OA and 50 ppm MPG additives by FBRM, PVM, SEM analysis, and number density theory application. This study revealed novel insights into the modification of the shape of boric acid crystals and into the control of CLD in the presence of OA and MPG using in situ FBRM and PVM probes.
dc.description.sponsorshipEti Mine Enterprises [400.02(TGD.2014/3)]
dc.description.sponsorshipThis work was supported by the Eti Mine Enterprises [ETIMINE, project number: 400.02(TGD.2014/3)].
dc.identifier.doi10.1021/acs.iecr.0c00551
dc.identifier.endpage9206
dc.identifier.issn0888-5885
dc.identifier.issue19
dc.identifier.scopus2-s2.0-85098627627
dc.identifier.scopusqualityQ1
dc.identifier.startpage9198
dc.identifier.urihttps://doi.org/10.1021/acs.iecr.0c00551
dc.identifier.urihttps://hdl.handle.net/20.500.12604/6812
dc.identifier.volume59
dc.identifier.wosWOS:000535251500029
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherAmer Chemical Soc
dc.relation.ispartofIndustrial & Engineering Chemistry Research
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_20241222
dc.titleUtilization of In Situ FBRM and PVM Probes to Analyze the Influences of Monopropylene Glycol and Oleic Acid as Novel Additives on the Properties of Boric Acid Crystals
dc.typeArticle

Dosyalar