Parametrized predictor-corrector method for initial value problems with classical and Caputo-Fabrizio derivatives

dc.authoridATANGANA, ABDON/0000-0002-1886-3125
dc.authoridIGRET ARAZ, SEDA/0000-0002-7698-0709
dc.contributor.authorAtangana, Abdon
dc.contributor.authorAraz, Seda Igret
dc.date.accessioned2024-12-24T19:29:48Z
dc.date.available2024-12-24T19:29:48Z
dc.date.issued2024
dc.departmentSiirt Üniversitesi
dc.description.abstractOrdinary nonlinear differential equations with classical and fractional derivatives are used to simulate several real-world problems. Nonetheless, numerical approaches are used to acquire their solutions. While various have been proposed, they are susceptible to both disadvantages and advantages. In this paper, we propose a more accurate numerical system for solving nonlinear differential equations with classical and Caputo-Fabrizio derivatives by combining two concepts: the parametrized method and the predictor-corrector method. We gave theoretical analyses to demonstrate the method's correctness, as well as several illustrated examples for both scenarios.
dc.identifier.doi10.1142/S0219887824400309
dc.identifier.issn0219-8878
dc.identifier.issn1793-6977
dc.identifier.scopus2-s2.0-85199491160
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1142/S0219887824400309
dc.identifier.urihttps://hdl.handle.net/20.500.12604/7228
dc.identifier.wosWOS:001275055800001
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherWorld Scientific Publ Co Pte Ltd
dc.relation.ispartofInternational Journal of Geometric Methods in Modern Physics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_20241222
dc.subjectNonlinear ODE
dc.subjectparametrized method
dc.subjectHeun's method
dc.subjectCaputo-Fabrizio derivative
dc.subjecttheoretical analysis
dc.titleParametrized predictor-corrector method for initial value problems with classical and Caputo-Fabrizio derivatives
dc.typeArticle

Files