Parametrized predictor-corrector method for initial value problems with classical and Caputo-Fabrizio derivatives
dc.authorid | ATANGANA, ABDON/0000-0002-1886-3125 | |
dc.authorid | IGRET ARAZ, SEDA/0000-0002-7698-0709 | |
dc.contributor.author | Atangana, Abdon | |
dc.contributor.author | Araz, Seda Igret | |
dc.date.accessioned | 2024-12-24T19:29:48Z | |
dc.date.available | 2024-12-24T19:29:48Z | |
dc.date.issued | 2024 | |
dc.department | Siirt Üniversitesi | |
dc.description.abstract | Ordinary nonlinear differential equations with classical and fractional derivatives are used to simulate several real-world problems. Nonetheless, numerical approaches are used to acquire their solutions. While various have been proposed, they are susceptible to both disadvantages and advantages. In this paper, we propose a more accurate numerical system for solving nonlinear differential equations with classical and Caputo-Fabrizio derivatives by combining two concepts: the parametrized method and the predictor-corrector method. We gave theoretical analyses to demonstrate the method's correctness, as well as several illustrated examples for both scenarios. | |
dc.identifier.doi | 10.1142/S0219887824400309 | |
dc.identifier.issn | 0219-8878 | |
dc.identifier.issn | 1793-6977 | |
dc.identifier.scopus | 2-s2.0-85199491160 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.1142/S0219887824400309 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12604/7228 | |
dc.identifier.wos | WOS:001275055800001 | |
dc.identifier.wosquality | N/A | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | |
dc.publisher | World Scientific Publ Co Pte Ltd | |
dc.relation.ispartof | International Journal of Geometric Methods in Modern Physics | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.snmz | KA_20241222 | |
dc.subject | Nonlinear ODE | |
dc.subject | parametrized method | |
dc.subject | Heun's method | |
dc.subject | Caputo-Fabrizio derivative | |
dc.subject | theoretical analysis | |
dc.title | Parametrized predictor-corrector method for initial value problems with classical and Caputo-Fabrizio derivatives | |
dc.type | Article |