On solutions of fractional Riccati differential equations

dc.authoridSakar, Mehmet Giyas/0000-0002-1911-2622
dc.contributor.authorSakar, Mehmet Giyas
dc.contributor.authorAkgul, Ali
dc.contributor.authorBaleanu, Dumitru
dc.date.accessioned2024-12-24T19:29:55Z
dc.date.available2024-12-24T19:29:55Z
dc.date.issued2017
dc.departmentSiirt Üniversitesi
dc.description.abstractWe apply an iterative reproducing kernel Hilbert space method to get the solutions of fractional Riccati differential equations. The analysis implemented in this work forms a crucial step in the process of development of fractional calculus. The fractional derivative is described in the Caputo sense. Outcomes are demonstrated graphically and in tabulated forms to see the power of the method. Numerical experiments are illustrated to prove the ability of the method. Numerical results are compared with some existing methods.
dc.identifier.doi10.1186/s13662-017-1091-8
dc.identifier.issn1687-1847
dc.identifier.scopus2-s2.0-85011841765
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://doi.org/10.1186/s13662-017-1091-8
dc.identifier.urihttps://hdl.handle.net/20.500.12604/7308
dc.identifier.wosWOS:000394161000003
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer International Publishing Ag
dc.relation.ispartofAdvances in Difference Equations
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_20241222
dc.subjectiterative reproducing kernel Hilbert space method
dc.subjectinner product
dc.subjectfractional Riccati differential equation
dc.subjectanalytic approximation
dc.titleOn solutions of fractional Riccati differential equations
dc.typeArticle

Dosyalar