Bifurcation Analysis of Travelling Waves and Multi-rogue Wave Solutions for a Nonlinear Pseudo-Parabolic Model of Visco-Elastic Kelvin-Voigt Fluid

dc.authoridalshammari, fahad sameer/0000-0002-5402-8960
dc.authoridNadeem, Muhammad/0000-0002-9349-4729
dc.authoridRoshid, Dr. Harun-Or-/0000-0002-1687-623X
dc.authoridUddin, Md. Sabur/0000-0002-7008-7098
dc.authoridMohd Noor, Noor Fadiya/0000-0002-4326-7384
dc.authoridHoque, Dr. Md. Fazlul/0000-0001-8427-1489
dc.contributor.authorUddin, Sabur
dc.contributor.authorKarim, Shazia
dc.contributor.authorAlshammari, F. S.
dc.contributor.authorRoshid, Harun-Or
dc.contributor.authorNoor, N. F. M.
dc.contributor.authorHoque, Fazlul
dc.contributor.authorNadeem, Muhammad
dc.date.accessioned2024-12-24T19:29:49Z
dc.date.available2024-12-24T19:29:49Z
dc.date.issued2022
dc.departmentSiirt Üniversitesi
dc.description.abstractThrough this article, we focus on the extension of travelling wave solutions for a prevalent nonlinear pseudo-parabolic physical Oskolkov model for Kevin-Voigt fluids by using two integral techniques. First of all, we explore the bifurcation and phase portraits of the model for different parametric conditions via a dynamical system approach. We derive smooth waves of the bright bell and dark bell, periodic waves, and singular waves of dark and bright cusps, in correspondence to homoclinic, periodic, and open orbits with cusp, respectively. Each orbit of the phase portraits is envisaged through various energy states. Secondly, with the help of a prevalent unified scheme, an inventive version of exact analytic solutions comprising hyperbolic, trigonometric, and rational functions can be invented with some collective parameters. The unified scheme is an excitably auspicious method to procure novel interacting travelling wave solutions and to obtain multipeaked bright and dark solitons, shock waves, bright bell waves with single and double shocks, combo waves of the bright-dark bell and dark-bright bell with a shock, dark bell into a double shock wave, and bright-dark multirogue type wave solutions of the model. The dynamics of the procured nonlinear wave solutions are also presented through 2-D, 3-D, and density plots with specified parameters.
dc.identifier.doi10.1155/2022/8227124
dc.identifier.issn1024-123X
dc.identifier.issn1563-5147
dc.identifier.scopus2-s2.0-85139565776
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1155/2022/8227124
dc.identifier.urihttps://hdl.handle.net/20.500.12604/7255
dc.identifier.volume2022
dc.identifier.wosWOS:000868017200023
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherHindawi Ltd
dc.relation.ispartofMathematical Problems in Engineering
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_20241222
dc.titleBifurcation Analysis of Travelling Waves and Multi-rogue Wave Solutions for a Nonlinear Pseudo-Parabolic Model of Visco-Elastic Kelvin-Voigt Fluid
dc.typeArticle

Dosyalar