SIMULATIONS AND ANALYSIS OF COVID-19 AS A FRACTIONAL MODEL WITH DIFFERENT KERNELS

dc.authoridNisar, Prof. Kottakkaran Sooppy/0000-0001-5769-4320
dc.authoridSaleem, Prof. Dr. Muhammad Umer/0000-0002-2263-3373
dc.contributor.authorYao, Shao-wen
dc.contributor.authorFarman, Muhammad
dc.contributor.authorAkgul, Ali
dc.contributor.authorNisar, Kottakkaran Sooppy
dc.contributor.authorAmin, Maryam
dc.contributor.authorSaleem, Muhammad Umer
dc.contributor.authorInc, Mustafa
dc.date.accessioned2024-12-24T19:29:43Z
dc.date.available2024-12-24T19:29:43Z
dc.date.issued2023
dc.departmentSiirt Üniversitesi
dc.description.abstractRecently, Atangana proposed new operators by combining fractional and fractal calculus. These recently proposed operators, referred to as fractal-fractional operators, have been widely used to study complex dynamics. In this paper, the COVID-19 model is considered via Atangana-Baleanu fractal-fractional operator. The Lyapunov stability for the model is derived for first and second derivative. Numerical results have developed through Lagrangian-piecewise interpolation for the different fractal-fractional operators. We develop numerical outcomes through different differential and integral fractional operators like power-law, exponential law, and Mittag-Leffler kernel. To get a better outcome of the proposed scheme, numerical simulation is made with different kernels having the memory effects with fractional parameters.
dc.description.sponsorshipNational Natural Science Foundation of China [71601072]; Key Scientific Research Project of Higher Education Institutions in Henan Province of China [NS-FRF210314]
dc.description.sponsorshipThis work was supported by National Natural Science Foundation of China (No. 71601072) and Key Scientific Research Project of Higher Education Institutions in Henan Province of China (No. NS-FRF210314).
dc.identifier.doi10.1142/S0218348X23400510
dc.identifier.issn0218-348X
dc.identifier.issn1793-6543
dc.identifier.issue4
dc.identifier.scopus2-s2.0-85160938478
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1142/S0218348X23400510
dc.identifier.urihttps://hdl.handle.net/20.500.12604/7217
dc.identifier.volume31
dc.identifier.wosWOS:000988819700001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherWorld Scientific Publ Co Pte Ltd
dc.relation.ispartofFractals-Complex Geometry Patterns and Scaling in Nature and Society
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_20241222
dc.subjectCOVID-19 Model
dc.subjectStability
dc.subjectPower-Law
dc.subjectExponential Law
dc.subjectMittag-Leffler
dc.subjectFractional Parameters
dc.titleSIMULATIONS AND ANALYSIS OF COVID-19 AS A FRACTIONAL MODEL WITH DIFFERENT KERNELS
dc.typeArticle

Dosyalar