Analysis of MHD generalized first problem of Stokes' in view of local and non-local fractal fractional differential operators
dc.contributor.author | Siddique, Imran | |
dc.contributor.author | Akgul, Ali | |
dc.date.accessioned | 2024-12-24T19:25:25Z | |
dc.date.available | 2024-12-24T19:25:25Z | |
dc.date.issued | 2020 | |
dc.department | Siirt Üniversitesi | |
dc.description.abstract | In this work, we investigate the unsteady MHD generalized first problem of Stokes' for an incompressible viscous fluid under isothermal conditions. The developed governing equations for the problem are formulated with the newly introduced fractal fractional operators with power law, exponential decay law and the Mittag-Leffler law kernels. For every operator, we give a point by point examination including, numerical arrangement and stability investigation. Likewise, we present some numerical recreation . (c) 2020 Elsevier Ltd. All rights reserved. | |
dc.identifier.doi | 10.1016/j.chaos.2020.110161 | |
dc.identifier.issn | 0960-0779 | |
dc.identifier.issn | 1873-2887 | |
dc.identifier.scopus | 2-s2.0-85089268656 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://doi.org/10.1016/j.chaos.2020.110161 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12604/6405 | |
dc.identifier.volume | 140 | |
dc.identifier.wos | WOS:000596306900005 | |
dc.identifier.wosquality | Q1 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | |
dc.publisher | Pergamon-Elsevier Science Ltd | |
dc.relation.ispartof | Chaos Solitons & Fractals | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.snmz | KA_20241222 | |
dc.subject | Fractal fractional derivative | |
dc.subject | Mittag-Leffler kernel | |
dc.subject | Stability analysis | |
dc.subject | Discretization | |
dc.title | Analysis of MHD generalized first problem of Stokes' in view of local and non-local fractal fractional differential operators | |
dc.type | Article |