DFT analysis and electronic properties, and synthesis of tetra (9-phenyl-9H-xanthen-9-yl) oxy peripheral-substituted zinc phthalocyanine
dc.contributor.author | Solgun, Derya Gungordu | |
dc.contributor.author | Keskin, Mehmet Salih | |
dc.contributor.author | Yildiko, Umit | |
dc.contributor.author | Agirtas, Mehmet Salih | |
dc.date.accessioned | 2024-12-24T19:24:53Z | |
dc.date.available | 2024-12-24T19:24:53Z | |
dc.date.issued | 2020 | |
dc.department | Siirt Üniversitesi | |
dc.description.abstract | The 4-((9-phenyl-9H-xanthene-9-yl) oxy) phthalonitrile compound was synthesized and characterized as starting material. Zinc phthalocyanine was obtained by reaction of 4-((9-phenyl-9H-xanthen-9-yl) oxy) phthalonitrile with Zn(CH3COO)(2). Novel compounds were characterized using mass spectra, UV-Vis spectroscopy, H-1-NMR, C-13 NMR, and infrared spectroscopy. The fluorescence, emission, excitation, and absorption spectra of the zinc phthalocyanine compound were studied in tetrahydrofuran (THF). The determination of these properties is very useful for photodynamic therapy applications. Also, zinc phthalocyanine (Zn-Pc) was optimized with the basic set of 6-311G and LanL2DZ of the Density functional theory (DFT). The energy band-gap HOMO-LUMO of the molecule was determined. Chemical indices were calculated using HOMO-LUMO energies. The electrophilic region and the nucleophilic region were defined from the molecular electrostatic potential (MESP) maps. Dipole moment components have been calculated and can be considered as potential candidates for the design of non-linear optical materials. | |
dc.description.sponsorship | Scientific Research Projects Unit of Van Yuzuncu Yl University [FDK-2019-8105] | |
dc.description.sponsorship | This study was supported by the Scientific Research Projects Unit of Van Yuzuncu Yl University (FDK-2019-8105). | |
dc.identifier.doi | 10.1007/s11696-020-01087-4 | |
dc.identifier.endpage | 2401 | |
dc.identifier.issn | 0366-6352 | |
dc.identifier.issn | 2585-7290 | |
dc.identifier.issue | 8 | |
dc.identifier.scopus | 2-s2.0-85078960486 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 2389 | |
dc.identifier.uri | https://doi.org/10.1007/s11696-020-01087-4 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12604/6174 | |
dc.identifier.volume | 74 | |
dc.identifier.wos | WOS:000515922700002 | |
dc.identifier.wosquality | Q3 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | |
dc.publisher | Springer Int Publ Ag | |
dc.relation.ispartof | Chemical Papers | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.snmz | KA_20241222 | |
dc.subject | Phthalocyanine | |
dc.subject | Fluorescence | |
dc.subject | Synthesis | |
dc.subject | Solubility | |
dc.subject | Computation | |
dc.subject | Non-linear | |
dc.title | DFT analysis and electronic properties, and synthesis of tetra (9-phenyl-9H-xanthen-9-yl) oxy peripheral-substituted zinc phthalocyanine | |
dc.type | Article |