ANALYSIS AND NEW APPLICATIONS OF FRACTAL FRACTIONAL DIFFERENTIAL EQUATIONS WITH POWER LAW KERNEL

dc.contributor.authorAkgul, Ali
dc.date.accessioned2024-12-24T19:33:58Z
dc.date.available2024-12-24T19:33:58Z
dc.date.issued2021
dc.departmentSiirt Üniversitesi
dc.description.abstractWe obtain the solutions of fractal fractional differential equations with the power law kernel by reproducing kernel Hilbert space method in this paper. We also apply the Laplace transform to get the exact solutions of the problems. We compare the exact solutions with the approximate solutions. We demonstrate our results by some tables and figures. We prove the efficiency of the proposed technique for fractal fractional differential equations.
dc.identifier.doi10.3934/dcdss.2020423
dc.identifier.endpage3417
dc.identifier.issn1937-1632
dc.identifier.issn1937-1179
dc.identifier.issue10
dc.identifier.scopus2-s2.0-85112438377
dc.identifier.scopusqualityQ1
dc.identifier.startpage3401
dc.identifier.urihttps://doi.org/10.3934/dcdss.2020423
dc.identifier.urihttps://hdl.handle.net/20.500.12604/8363
dc.identifier.volume14
dc.identifier.wosWOS:000678575000005
dc.identifier.wosqualityQ2
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherAmer Inst Mathematical Sciences-Aims
dc.relation.ispartofDiscrete and Continuous Dynamical Systems-Series S
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_20241222
dc.subjectpower law kernel
dc.subjectreproducing kernel Hilbert space method
dc.subjectMalkus waterwheel model
dc.subjectnumerical simulations
dc.subjectFractal fractional differential equations
dc.titleANALYSIS AND NEW APPLICATIONS OF FRACTAL FRACTIONAL DIFFERENTIAL EQUATIONS WITH POWER LAW KERNEL
dc.typeArticle

Dosyalar