A successive midpoint method for nonlinear differential equations with classical and Caputo-Fabrizio derivatives

dc.contributor.authorAtangana, Abdon
dc.contributor.authorAraz, Seda Igret
dc.date.accessioned2024-12-24T19:34:03Z
dc.date.available2024-12-24T19:34:03Z
dc.date.issued2023
dc.departmentSiirt Üniversitesi
dc.description.abstractIn this study, we present a numerical scheme for solving nonlinear ordinary differential equations with classical and Caputo-Fabrizio derivatives using consecutive interval division and the midpoint approach. By doing so, we increased the accuracy of the midpoint approach, which is dependent on the number of interval divisions. In the example of the Caputo-Fabrizio differential operator, we established the existence and uniqueness of the solution using the Caratheodory-Tonelli sequence. We solved numerous nonlinear equations and determined the global error to test the accuracy of the proposed scheme. When the differential equation met the circumstances under which it was generated, the results revealed that the procedure was quite accurate.
dc.identifier.doi10.3934/math.20231397
dc.identifier.endpage27327
dc.identifier.issn2473-6988
dc.identifier.issue11
dc.identifier.scopus2-s2.0-85172193931
dc.identifier.scopusqualityQ1
dc.identifier.startpage27309
dc.identifier.urihttps://doi.org/10.3934/math.20231397
dc.identifier.urihttps://hdl.handle.net/20.500.12604/8402
dc.identifier.volume8
dc.identifier.wosWOS:001080659300002
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherAmer Inst Mathematical Sciences-Aims
dc.relation.ispartofAims Mathematics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_20241222
dc.subjectmidpoint method
dc.subjectCaratheodory-Tonelli sequence
dc.subjectCaputo-Fabrizio fractional derivative
dc.titleA successive midpoint method for nonlinear differential equations with classical and Caputo-Fabrizio derivatives
dc.typeArticle

Dosyalar