Radiative heat transfer in MHD copper-based polymer nanofluid over a sphere using larger radius and inter particle spacing of nanoparticles

dc.contributor.authorAdil Darvesh
dc.contributor.authorImed Boukhris
dc.contributor.authorLuis Jaime Collantes Santisteban
dc.contributor.authorM.S. Al-Buriahi
dc.contributor.authorZainab Mufarreh Elqahtani
dc.contributor.authorAli Akgül
dc.contributor.authorLucerito Katherine Ortiz García
dc.contributor.authorMurad Khan Hassani
dc.date.accessioned2025-05-13T06:24:33Z
dc.date.available2025-05-13T06:24:33Z
dc.date.issued2025-06
dc.departmentFakülteler, Fen-Edebiyat Fakültesi, Matematik Bölümü
dc.description.abstractThe impact of nanoparticle size and interparticles spacing play a crucial role in fluid theology due to its significance on enhance heat transfer performance, which is crucial in many engineering and industrial processes particularly in thermal management systems. Due to this attention, the proposed study aims to explore the influence of nanoparticle radius and inter-particle spacing on thermal transport in a Copper (Cu) Polymer nanofluid over a sphere with radiative and magnetohydrodynamic (MHD) effects. Physical model incorporates Carreau fluid viscosity model. In addition, with incorporation of exponential heat generation and thermal radiation, the analysis reveals how tuning nanoparticle geometry significantly enhances heat transfer performance, which is critical for advanced thermal management systems. The governing nonlinear partial differential equations (PDEs) are transformed into ordinary differential equations (ODEs) using similarity transformations and solved using the well-known bvp4c computational method. Results of proposed study indicate that larger nanoparticles and wider inter-particle spacing improve thermophysical and rheological behavior of fluid specifically thermal conductivity and fluid viscosity, which enhanced heat transport and intensified the temperature profile. Conversely, velocity profile decreases for smaller particle sizes and spacing but improves with increased nanoparticle dimensions.
dc.identifier.citationDarvesh, A., Boukhris, I., Santisteban, L. J. C., Al-Buriahi, M. S., Elqahtani, Z. M., Akgül, A., ... & Hassani, M. K. (2025). Radiative Heat Transfer in MHD Copper-Based Polymer Nanofluid Over a Sphere using Larger Radius and Inter Particle Spacing of Nanoparticles. Results in Engineering, 105012.
dc.identifier.doi10.1016/j.rineng.2025.105012
dc.identifier.issn2590-1230
dc.identifier.scopus2-s2.0-105003998548
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.rineng.2025.105012
dc.identifier.urihttps://hdl.handle.net/20.500.12604/8658
dc.identifier.volume26
dc.identifier.wosqualityQ1
dc.indekslendigikaynakScopus
dc.institutionauthorAkgül, Ali
dc.institutionauthorid0000-0001-9832-1424
dc.publisherElsevier BV
dc.relation.ispartofResults in Engineering
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.subjectExponential heat sink/source
dc.subjectLarger radius and Inter particle spacing of nanoparticles
dc.subjectMHD nanofluid
dc.subjectRadiative heat transfer
dc.subjectSphere geometry
dc.subjectNumerical Simulation
dc.titleRadiative heat transfer in MHD copper-based polymer nanofluid over a sphere using larger radius and inter particle spacing of nanoparticles
dc.typejournal-article
oaire.citation.volume26

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
Yükleniyor...
Küçük Resim
İsim:
Ali-Akgül-2025.pdf
Boyut:
5.43 MB
Biçim:
Adobe Portable Document Format
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
İsim:
license.txt
Boyut:
1.17 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: