Thermal radiative mixed convection flow of MHD Maxwell nanofluid: Implementation of buongiorno's model

dc.authoridImran, Muhammad/0000-0002-2363-5039
dc.authoridSafdar, Rabia/0000-0003-3197-7095
dc.authoridJawad, Muhammad/0000-0002-9304-615X
dc.contributor.authorSafdar, Rabia
dc.contributor.authorJawad, Muhammad
dc.contributor.authorHussain, Sajjad
dc.contributor.authorImran, Muhammad
dc.contributor.authorAkgul, Ali
dc.contributor.authorJamshed, Wasim
dc.date.accessioned2024-12-24T19:26:59Z
dc.date.available2024-12-24T19:26:59Z
dc.date.issued2022
dc.departmentSiirt Üniversitesi
dc.description.abstractA mathematical model for steady MHD Maxwell nanofluid flow over the porous stretching sheet with gyrotactic microorganisms is discussed theoretically and numerically. We use the theory of the microorganism to stabilize the suspended nanoparticles, due to bio convection, induced by the impacts of buoyancy forces. Similarity transformations used to transform the mathematical PDEs of non-linear nature i.e., continuity equation, velocity, concentration, density, and energy of motile micro-organisms into the system of non-linear ordinary differential equations. Mathematica 11used to acquire the solutions for the mathematical model. Boundary conditions together with non-zero value of mass flux is imposed on the given problem. Valuations are performed graphically for several protuberant parameters like Hartman number, bio convection, Peclet number, Deborah number, thermophoresis diffusion, Rayleigh number, Brownian motion, and mixed convection parameters. These different parameters are employed on non-dimension velocity function, temperature function, concentration function and density of the motile microorganisms and studied numerically in detail. It is observed that by increasing the value of bioconvection parameter as well as Peclet number, the microorganism field diminishes. Graphical diagrams are showing the consistency of the latest results.
dc.identifier.doi10.1016/j.cjph.2021.11.022
dc.identifier.endpage1478
dc.identifier.issn0577-9073
dc.identifier.scopus2-s2.0-85128400924
dc.identifier.scopusqualityQ1
dc.identifier.startpage1465
dc.identifier.urihttps://doi.org/10.1016/j.cjph.2021.11.022
dc.identifier.urihttps://hdl.handle.net/20.500.12604/6434
dc.identifier.volume77
dc.identifier.wosWOS:000795495700003
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofChinese Journal of Physics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_20241222
dc.subjectMHD
dc.subjectMaxwell nanofluid
dc.subjectBuoyancy forces
dc.subjectGyrotactic micro-organism
dc.subjectThermal radiation
dc.titleThermal radiative mixed convection flow of MHD Maxwell nanofluid: Implementation of buongiorno's model
dc.typeArticle

Dosyalar