Thermal radiative mixed convection flow of MHD Maxwell nanofluid: Implementation of buongiorno's model
dc.authorid | Imran, Muhammad/0000-0002-2363-5039 | |
dc.authorid | Safdar, Rabia/0000-0003-3197-7095 | |
dc.authorid | Jawad, Muhammad/0000-0002-9304-615X | |
dc.contributor.author | Safdar, Rabia | |
dc.contributor.author | Jawad, Muhammad | |
dc.contributor.author | Hussain, Sajjad | |
dc.contributor.author | Imran, Muhammad | |
dc.contributor.author | Akgul, Ali | |
dc.contributor.author | Jamshed, Wasim | |
dc.date.accessioned | 2024-12-24T19:26:59Z | |
dc.date.available | 2024-12-24T19:26:59Z | |
dc.date.issued | 2022 | |
dc.department | Siirt Üniversitesi | |
dc.description.abstract | A mathematical model for steady MHD Maxwell nanofluid flow over the porous stretching sheet with gyrotactic microorganisms is discussed theoretically and numerically. We use the theory of the microorganism to stabilize the suspended nanoparticles, due to bio convection, induced by the impacts of buoyancy forces. Similarity transformations used to transform the mathematical PDEs of non-linear nature i.e., continuity equation, velocity, concentration, density, and energy of motile micro-organisms into the system of non-linear ordinary differential equations. Mathematica 11used to acquire the solutions for the mathematical model. Boundary conditions together with non-zero value of mass flux is imposed on the given problem. Valuations are performed graphically for several protuberant parameters like Hartman number, bio convection, Peclet number, Deborah number, thermophoresis diffusion, Rayleigh number, Brownian motion, and mixed convection parameters. These different parameters are employed on non-dimension velocity function, temperature function, concentration function and density of the motile microorganisms and studied numerically in detail. It is observed that by increasing the value of bioconvection parameter as well as Peclet number, the microorganism field diminishes. Graphical diagrams are showing the consistency of the latest results. | |
dc.identifier.doi | 10.1016/j.cjph.2021.11.022 | |
dc.identifier.endpage | 1478 | |
dc.identifier.issn | 0577-9073 | |
dc.identifier.scopus | 2-s2.0-85128400924 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 1465 | |
dc.identifier.uri | https://doi.org/10.1016/j.cjph.2021.11.022 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12604/6434 | |
dc.identifier.volume | 77 | |
dc.identifier.wos | WOS:000795495700003 | |
dc.identifier.wosquality | Q1 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.relation.ispartof | Chinese Journal of Physics | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.snmz | KA_20241222 | |
dc.subject | MHD | |
dc.subject | Maxwell nanofluid | |
dc.subject | Buoyancy forces | |
dc.subject | Gyrotactic micro-organism | |
dc.subject | Thermal radiation | |
dc.title | Thermal radiative mixed convection flow of MHD Maxwell nanofluid: Implementation of buongiorno's model | |
dc.type | Article |