New numerical method for ordinary differential equations: Newton polynomial

dc.contributor.authorAtangana, Abdon
dc.contributor.authorAraz, Seda Igret
dc.date.accessioned2020-03-16T07:44:02Z
dc.date.available2020-03-16T07:44:02Z
dc.date.issued2020en_US
dc.departmentEğitim Fakültesien_US
dc.description.abstractAn error estimate of optimal order is established for the correspondingnumerical solutions in a scaled residual norm. In addition, a mathematical convergenceis established in a weak L2topology for the new numerical method. Numerical resultsare reported to demonstrate the efficiency of the primal–dual weak Galerkin method aswell as the accuracy of the numerical approximationsen_US
dc.identifier.citationAtangana, A., & Araz, S. Ä°. (2020). New numerical method for ordinary differential equations: Newton polynomial. Journal of Computational and Applied Mathematics, 372, 112622.en_US
dc.identifier.doi10.1016/j.cam.2019.112668
dc.identifier.endpage18en_US
dc.identifier.startpage1en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12604/2675
dc.identifier.volume371en_US
dc.institutionauthorAraz, Seda Igret
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofJournal of Computational and Applied Mathematics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.snmz#KayıtKontrol#
dc.subjectPrimal–duaen_US
dc.subjectWeak Galerkinen_US
dc.subjectFinite element methodsen_US
dc.subjectElliptic Cauchy problemen_US
dc.subjectWeak gradienten_US
dc.subjectPolygonal or polyhedral meshesen_US
dc.titleNew numerical method for ordinary differential equations: Newton polynomialen_US
dc.typeArticleen_US

Dosyalar

Orijinal paket
Listeleniyor 1 - 1 / 1
[ X ]
Ä°sim:
Elsevier Enhanced Reader.pdf
Boyut:
5.98 MB
Biçim:
Adobe Portable Document Format
Açıklama:
Makale
Lisans paketi
Listeleniyor 1 - 1 / 1
[ X ]
Ä°sim:
license.txt
Boyut:
1.44 KB
Biçim:
Item-specific license agreed upon to submission
Açıklama: