New numerical method for ordinary differential equations: Newton polynomial
dc.contributor.author | Atangana, Abdon | |
dc.contributor.author | Araz, Seda Igret | |
dc.date.accessioned | 2020-03-16T07:44:02Z | |
dc.date.available | 2020-03-16T07:44:02Z | |
dc.date.issued | 2020 | en_US |
dc.department | Eğitim Fakültesi | en_US |
dc.description.abstract | An error estimate of optimal order is established for the correspondingnumerical solutions in a scaled residual norm. In addition, a mathematical convergenceis established in a weak L2topology for the new numerical method. Numerical resultsare reported to demonstrate the efficiency of the primal–dual weak Galerkin method aswell as the accuracy of the numerical approximations | en_US |
dc.identifier.citation | Atangana, A., & Araz, S. Ä°. (2020). New numerical method for ordinary differential equations: Newton polynomial. Journal of Computational and Applied Mathematics, 372, 112622. | en_US |
dc.identifier.doi | 10.1016/j.cam.2019.112668 | |
dc.identifier.endpage | 18 | en_US |
dc.identifier.startpage | 1 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.12604/2675 | |
dc.identifier.volume | 371 | en_US |
dc.institutionauthor | Araz, Seda Igret | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | Journal of Computational and Applied Mathematics | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/embargoedAccess | en_US |
dc.snmz | #KayıtKontrol# | |
dc.subject | Primal–dua | en_US |
dc.subject | Weak Galerkin | en_US |
dc.subject | Finite element methods | en_US |
dc.subject | Elliptic Cauchy problem | en_US |
dc.subject | Weak gradient | en_US |
dc.subject | Polygonal or polyhedral meshes | en_US |
dc.title | New numerical method for ordinary differential equations: Newton polynomial | en_US |
dc.type | Article | en_US |