A novel method for fractal-fractional differential equations
[ X ]
Tarih
2022
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
We consider the reproducing kernel Hilbert space method to construct numerical solutions for some basic fractional ordinary differential equations (FODEs) under fractal fractional derivative with the generalized Mittag-Leffler (M-L) kernel. Deriving the analytic and numerical solutions of this new class of differential equations are modern trends. To apply this method, we use reproducing kernel theory and two important Hilbert spaces. We provide three problems to illustrate our main results including the profiles of different representative approximate solutions. The computational results are compared with the exact solutions. The results obtained clearly show the effect of the fractal fractional derivative with the M-L kernel in the obtained outcomes. Meanwhile, the compatibility between the approximate and exact solutions confirms the applicability and superior performance of the method. (c) 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
Açıklama
Anahtar Kelimeler
Reproducing kernel Hilbert space method, Gram-Schmidt orthogonal-ization process, Fractal-fractional derivative, Mittag-Leffler kernel
Kaynak
Alexandria Engineering Journal
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
61
Sayı
12