Rare-class learning over Mg-doped ZnO nanoparticles

dc.authoridKURBAN, HASAN/0000-0003-3142-2866
dc.authoridKurban, Mustafa/0000-0002-7263-0234
dc.contributor.authorKurban, Hasan
dc.contributor.authorKurban, Mustafa
dc.date.accessioned2024-12-24T19:26:59Z
dc.date.available2024-12-24T19:26:59Z
dc.date.issued2021
dc.departmentSiirt Üniversitesi
dc.description.abstractThis interdisciplinary study is conducted to find answers to two important questions which researchers often face in Machine Learning (ML) and Material Science (MS) fields. In this work, we measure the performance of the most popular ML algorithms (more than a dozen) on rare-class learning problem and determine the best learning algorithm for atom type prediction over the Mg-doped ZnO nanoparticles data obtained from the densityfunctional tight-binding method. As a result, we observe that tree-based ML algorithms such as Extreme Gradient Boosting (XGB), Decision Trees (DT), Random Forest (RF), outperform other types of ML algorithms, e. g., cost-sensitive learning, prototype models, support vector machines, kernel methods, on both rare-class learning and atom type prediction.
dc.identifier.doi10.1016/j.chemphys.2021.111159
dc.identifier.issn0301-0104
dc.identifier.issn1873-4421
dc.identifier.scopus2-s2.0-85103049822
dc.identifier.scopusqualityQ2
dc.identifier.urihttps://doi.org/10.1016/j.chemphys.2021.111159
dc.identifier.urihttps://hdl.handle.net/20.500.12604/6430
dc.identifier.volume546
dc.identifier.wosWOS:000647576100007
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofChemical Physics
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_20241222
dc.subjectMachine learning
dc.subjectMaterial science
dc.subjectRare-class learning
dc.subjectTree-based models
dc.subjectExtreme gradient boosting
dc.titleRare-class learning over Mg-doped ZnO nanoparticles
dc.typeArticle

Dosyalar