Two novel local binary pattern descriptors for texture analysis

dc.authoridTekin, Ramazan/0000-0003-4325-6922
dc.contributor.authorKaya, Yilmaz
dc.contributor.authorErtugrul, Omer Faruk
dc.contributor.authorTekin, Ramazan
dc.date.accessioned2024-12-24T19:25:20Z
dc.date.available2024-12-24T19:25:20Z
dc.date.issued2015
dc.departmentSiirt Üniversitesi
dc.description.abstractThe recent developments in the image quality, storage and data transmission capabilities increase the importance of texture analysis, which plays an important role in computer vision and image processing. Local binary pattern (LBP) is an effective statistical texture descriptor, which has successful applications in texture classification. In this paper, two novel descriptors were proposed to search different patterns in images built on LBP. One of them is based on the relations between the sequential neighbors with a specified distance and the other one is based on determining the neighbors in the same orientation through central pixel parameter. These descriptors are tested with the Brodatz-1, Brodatz-2, Butterfly and Kylberg datasets to show the applicability of the proposed nLBP(d) and dLBP(alpha) descriptors. The proposed methods are also compared with classical LBP. The average accuracies obtained by ANN with 10 fold cross validation, which are 99.26% (LBPu2 and nLBP(d)), 94.44% (dLBP(alpha)), 95.71% (nLBP(d)(u2)) and %99.64 (nLBP(d)), for Brodatz-1, Brodatz-2, Butterfly and Kylberg datasets, respectively, show that the proposed methods outperform significant accuracies. (C) 2015 Elsevier B.V. All rights reserved.
dc.identifier.doi10.1016/j.asoc.2015.06.009
dc.identifier.endpage735
dc.identifier.issn1568-4946
dc.identifier.issn1872-9681
dc.identifier.scopus2-s2.0-84934891986
dc.identifier.scopusqualityQ1
dc.identifier.startpage728
dc.identifier.urihttps://doi.org/10.1016/j.asoc.2015.06.009
dc.identifier.urihttps://hdl.handle.net/20.500.12604/6366
dc.identifier.volume34
dc.identifier.wosWOS:000357469500053
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofApplied Soft Computing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/closedAccess
dc.snmzKA_20241222
dc.subjectLocal binary patterns
dc.subjectnLBP(d)
dc.subjectdLBP(alpha)
dc.subjectTexture classification
dc.subjectFeature extraction
dc.subjectImage classification
dc.titleTwo novel local binary pattern descriptors for texture analysis
dc.typeArticle

Dosyalar