Regeneration of Lithium-ion battery impedance using a novel machine learning framework and minimal empirical data
dc.authorid | Temiz, Selcuk/0000-0002-6649-6251 | |
dc.authorid | KURBAN, HASAN/0000-0003-3142-2866 | |
dc.authorid | Erol, Salim/0000-0002-7219-6642 | |
dc.contributor.author | Temiz, Selcuk | |
dc.contributor.author | Kurban, Hasan | |
dc.contributor.author | Erol, Salim | |
dc.contributor.author | Dalkilic, Mehmet M. | |
dc.date.accessioned | 2024-12-24T19:27:03Z | |
dc.date.available | 2024-12-24T19:27:03Z | |
dc.date.issued | 2022 | |
dc.department | Siirt Üniversitesi | |
dc.description.abstract | The use of Electrochemical Impedance Spectroscopy on rechargeable Lithium-ion battery characterization is an extensively recognized non-destructive procedure for both in-situ and ex-situ analyses. In an impedance measurement for a rechargeable battery, the oscillating current with an accompanying phase angle is the response for a potential perturbation. The proper evaluation of phase angle as a crucial impedance parameter, provides critical understanding of the status of the battery. Although fast and simple, impedance data is difficult to interpret. Using a novel data-centric Machine Learning framework (co-modeling) we demonstrate how to impute experimental data quickly, precisely, and inexpensively that agrees with wholly experimentally generated data. In particular, we predict the phase angle with 99.9% accuracy by training the minimal empirical impedance data. This approach demonstrates a potentially burgeoning field of Machine Learning experimental data imputation and the consequence of faster diagnostic and study of batteries. | |
dc.description.sponsorship | Scientific Research Foun-dation at Eskisehir Osmangazi University, Turkey [2017-1911] | |
dc.description.sponsorship | Funding information S. Erol acknowledges the support from the Scientific Research Foun-dation at Eskisehir Osmangazi University, Turkey under grant number 2017-1911. | |
dc.identifier.doi | 10.1016/j.est.2022.105022 | |
dc.identifier.issn | 2352-152X | |
dc.identifier.issn | 2352-1538 | |
dc.identifier.scopus | 2-s2.0-85131744114 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://doi.org/10.1016/j.est.2022.105022 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12604/6482 | |
dc.identifier.volume | 52 | |
dc.identifier.wos | WOS:000814756200008 | |
dc.identifier.wosquality | Q1 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.relation.ispartof | Journal of Energy Storage | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.snmz | KA_20241222 | |
dc.subject | Li-ion batteries | |
dc.subject | Electrochemical impedance spectroscopy | |
dc.subject | Machine learning | |
dc.subject | Regression | |
dc.subject | Cooperative learning | |
dc.title | Regeneration of Lithium-ion battery impedance using a novel machine learning framework and minimal empirical data | |
dc.type | Article |