Generalized Hyers-Ulam stability of ?-functional inequalities
dc.contributor.author | Nawaz, Sundas | |
dc.contributor.author | Bariq, Abdul | |
dc.contributor.author | Batool, Afshan | |
dc.contributor.author | Akgul, Ali | |
dc.date.accessioned | 2024-12-24T19:29:54Z | |
dc.date.available | 2024-12-24T19:29:54Z | |
dc.date.issued | 2023 | |
dc.department | Siirt Üniversitesi | |
dc.description.abstract | In our research work generalized Hyers-Ulam stability of the following functional inequalities is analyzed by using fixed point approach: parallel to f(2x + y) + f(2x - y) - 2f(x + y) - 2f(x - y) - 12f(x) - rho(4f(x + y/2) + 4(f(x - y/2) - f (x + y) - f (x - y) -6f(x), r)parallel to >= r/r + phi(x, y) (0.1) and parallel to f(2x + y) + f(2x - y) - 4f(x + y) - 4f(x - y) - 6f(y) - rho(8f(x + y/2) + 8(f(x - y/2) - 2f(x + y) - 2f (x - y) - 12f(x) + 3f(y), r)parallel to >= r/r + phi(x, y) (0.2) in the setting of fuzzy matrix, where. rho not equal 2 is a real number. We also discussed Hyers-Ulam stability from the application point of view. | |
dc.identifier.doi | 10.1186/s13660-023-03047-4 | |
dc.identifier.issn | 1029-242X | |
dc.identifier.issue | 1 | |
dc.identifier.scopus | 2-s2.0-85174901105 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://doi.org/10.1186/s13660-023-03047-4 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12604/7302 | |
dc.identifier.volume | 2023 | |
dc.identifier.wos | WOS:001092911300001 | |
dc.identifier.wosquality | Q1 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | |
dc.publisher | Springer | |
dc.relation.ispartof | Journal of Inequalities and Applications | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.snmz | KA_20241222 | |
dc.title | Generalized Hyers-Ulam stability of ?-functional inequalities | |
dc.type | Article |