Correlation of blocking and Néel temperatures in ultrathin metallic antiferromagnets

dc.authoridKOCAMAN, BAYRAM/0000-0002-9439-3604
dc.contributor.authorAkin, Kutay
dc.contributor.authorPiskin, Hasan
dc.contributor.authorSelvi, Ege
dc.contributor.authorDemircanli, Emre
dc.contributor.authorAri, Sevval
dc.contributor.authorZadeh, Mohammad Hassan Ramezan
dc.contributor.authorKocaman, Bayram
dc.date.accessioned2024-12-24T19:28:30Z
dc.date.available2024-12-24T19:28:30Z
dc.date.issued2024
dc.departmentSiirt Üniversitesi
dc.description.abstractNonvolatile spintronics-based devices that utilize electron spin both to store and transport information face a great challenge when scaled to nanosized dimensions due to loss of thermal stability and stray field- induced disturbance in closely packed magnetic bits. The potential replacement of ferromagnetic materials with antiferromagnets may overcome some of these issues owing to the superior robustness of sublattice spin orientations to magnetic field disturbance as long as they are kept well below the N & eacute;el temperature, which is hard to measure with conventional methods, especially in the ultrathin limit. In this work, we have employed spin pumping from a soft ferromagnetic NiFe layer into widely used ultrathin metallic antiferromagnet Ir20Mn80, 20 Mn 80 , FeMn, PtMn, PdMn, or NiMn with thicknesses in the 0.7-3 nm range, as a probe to detect damping enhancement during magnetic phase-transitions. Independent measurements of the blocking temperature with magnetometry reveal that temperature-dependent shifts in the resonance peaks can also be used to measure the blocking temperature, enabling the analysis of the correlation between the N & eacute;el and blocking temperatures in trilayers with the permalloy and antiferromagnetic layer separated by a 3-nm-thick spacer layer. The thickness-dependent characterization of thermal stability in antiferromagnets provides a key element for scalable and ultrafast antiferromagnetic spintronics.
dc.description.sponsorshipScientific and Tech-nological Research Council of Turkey (TUBITAK) [118F431]; Bogazici University Research Fund [20B03M6]
dc.description.sponsorshipThis work was supported by the Scientific and Tech-nological Research Council of Turkey (TUBITAK) under Grant No. 118F431 and Bogazici University Research Fund under Grant No. 20B03M6. The authors thank Sabanc & imath; University SUNUM for nanofabrication support.
dc.identifier.doi10.1103/PhysRevApplied.22.044037
dc.identifier.issn2331-7019
dc.identifier.issue4
dc.identifier.scopus2-s2.0-85206609324
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1103/PhysRevApplied.22.044037
dc.identifier.urihttps://hdl.handle.net/20.500.12604/7094
dc.identifier.volume22
dc.identifier.wosWOS:001339055800003
dc.identifier.wosqualityN/A
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherAmer Physical Soc
dc.relation.ispartofPhysical Review Applied
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_20241222
dc.titleCorrelation of blocking and Néel temperatures in ultrathin metallic antiferromagnets
dc.typeArticle

Dosyalar