Lyapunov stability and wave analysis of Covid-19 omicron variant of real data with fractional
[ X ]
Tarih
2022
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
The fractional derivative is an advanced category of mathematics for real-life problems. This work focus on the investigation of 2nd wave of the Corona virus in India. We develop a time fractional order COVID-19 model with effects of the disease which consist of a system of fractional differential equations. The fractional-order COVID-19 model is investigated with AtanganaBaleanu-Caputo fractional derivative. Also, the deterministic mathematical model for the Omicron effect is investigated with different fractional parameters. The fractional-order system is analyzed qualitatively as well as verified sensitivity analysis. Fixed point theory is used to prove the existence and uniqueness of the fractional-order model. Analyzed the model locally as well as globally using Lyapunov first and second derivative. Boundedness and positive unique solutions are verified for the fractional-order model of infection of disease. The concept of fixed point theory is used to interrogate the problem and confine the solution. Solutions are derived to investigate the influence of fractional operator which shows the impact of the disease on society. Simulation has been made to understand the behavior of the virus.(c) 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/ 4.0/).
Açıklama
Anahtar Kelimeler
Omicron, Stability, Atangana-Toufik, Lyapunov stability, Second derivative Equilib-rium point
Kaynak
Alexandria Engineering Journal
WoS Q Değeri
Q1
Scopus Q Değeri
Q1
Cilt
61
Sayı
12