Nonlinear equations with global differential and integral operators: Existence, uniqueness with application to epidemiology
[ X ]
Tarih
2021
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Elsevier
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
Very recently, the concept of instantaneous change was extended with the aim to accommodate prediction of more complex real world problems that could not be predicted or depicted by the existing rate of change. The extension gave birth to a more general differential operator that to be a derivative associate to the well-known Riemann-Stieltjes integral. In addition to this, using specific functions, one is able to recover all existing local differential operators defined as rate of change. This extended concept is still at its genesis and more works need to be done to establish a Riemann-Stieltjes calculus. In this paper, we aim to present a detailed analysis of an important class of differential equations called stochastic equations with the new classes of differential operators with the global derivative with integer and non-integer orders. We considered many classes as nonlinear Cauchy problems, then we presented existence and the uniqueness of their solutions using the linear growth and the Lipchitz conditions. We derived numerical solutions for each class and presented the error analysis. To show the applicability of these operators, we considered three epidemiological problems, including the zombie virus spread model, the zika virus spread model and Ebola model. We solved each model using the suggested numerical scheme and presented the numerical solutions for different values of fractional order and the global function g(t). Our results showed that, more complex real world problems could be depicted using these classes of differential equations.
Açıklama
Anahtar Kelimeler
Global rate of change, Global derivative, Fractional kernels, Zombie virus, Zika virus, Ebola virus
Kaynak
Results in Physics
WoS Q Değeri
Q2
Scopus Q Değeri
Q1
Cilt
20