Modelling and analysis of fractal-fractional partial differential equations: Application to reaction-diffusion model

dc.contributor.authorOwolabi, Kolade M.
dc.contributor.authorAtangana, Abdon
dc.contributor.authorAkgul, Ali
dc.date.accessioned2024-12-24T19:25:09Z
dc.date.available2024-12-24T19:25:09Z
dc.date.issued2020
dc.departmentSiirt Üniversitesi
dc.description.abstractIn this paper, an extension is paid to an idea of fractal and fractional derivatives which has been applied to a number of ordinary differential equations to model a system of partial differential equations. As a case study, the fractal fractional Schnakenberg system is formulated with the Caputo operator (in terms of the power law), the Caputo-Fabrizio operator (with exponential decay law) and the Atangana-Baleanu fractional derivative (based on the Mittag-Liffler law). We design some algorithms for the Schnakenberg model by using the newly proposed numerical methods. In such schemes, it worth mentioning that the classical cases are recovered whenever alpha = 1 and beta = 1. Numerical results obtained for different fractal-order (beta is an element of (0, 1)) and fractional-order (alpha is an element of (0, 1)) are also given to address any point and query that may arise. (C) 2020 The Authors. Published by Elsevier B.V. on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
dc.identifier.doi10.1016/j.aej.2020.03.022
dc.identifier.endpage2490
dc.identifier.issn1110-0168
dc.identifier.issn2090-2670
dc.identifier.issue4
dc.identifier.scopus2-s2.0-85082742427
dc.identifier.scopusqualityQ1
dc.identifier.startpage2477
dc.identifier.urihttps://doi.org/10.1016/j.aej.2020.03.022
dc.identifier.urihttps://hdl.handle.net/20.500.12604/6296
dc.identifier.volume59
dc.identifier.wosWOS:000563768600021
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofAlexandria Engineering Journal
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_20241222
dc.subjectFractal operator
dc.subjectCaputo and Caputo-Fabrizio derivatives
dc.subjectFractional reaction-diffusion
dc.subjectLinear stability analysis
dc.subjectMittag-Leffler kernel
dc.titleModelling and analysis of fractal-fractional partial differential equations: Application to reaction-diffusion model
dc.typeArticle

Dosyalar