Comparative study of fractional Newell-Whitehead-Segel equation using optimal auxiliary function method and a novel iterative approach
dc.authorid | Bonyah, Ebenezer/0000-0003-0808-4504 | |
dc.authorid | , Abdul Hamid Ganie/0000-0002-1787-5036 | |
dc.authorid | Xin, Xiao/0009-0003-5942-0923 | |
dc.authorid | , Dr. Dowlath Fathima/0000-0002-9516-1485 | |
dc.contributor.author | Xin, Xiao | |
dc.contributor.author | Khan, Ibrar | |
dc.contributor.author | Ganie, Abdul Hamid | |
dc.contributor.author | Akgul, Ali | |
dc.contributor.author | Bonyah, Ebenezer | |
dc.contributor.author | Fathima, Dowlath | |
dc.contributor.author | Yousif, Badria Almaz Ali | |
dc.date.accessioned | 2024-12-24T19:28:00Z | |
dc.date.available | 2024-12-24T19:28:00Z | |
dc.date.issued | 2024 | |
dc.department | Siirt Üniversitesi | |
dc.description.abstract | This research explores the solution of the time-fractional Newell-Whitehead-Segel equation using two separate methods: the optimal auxiliary function method and a new iterative method. The Newell-Whitehead-Segel equation holds significance in modeling nonlinear systems, particularly in delineating stripe patterns within two-dimensional systems. Employing the Caputo fractional derivative operator, we address two case study problems pertaining to this equation through our proposed methods. Comparative analysis between the numerical results obtained from our techniques and an exact solution reveals a strong alignment. Graphs and tables illustrate this alignment, showcasing the effectiveness of our methods. Notably, as the fractional orders vary, the results achieved at different fractional orders are compared, highlighting their convergence toward the exact solution as the fractional order approaches an integer. Demonstrating both interest and simplicity, our proposed methods exhibit high accuracy in resolving diverse nonlinear fractional order partial differential equations. (c) 2024 Author(s). | |
dc.identifier.doi | 10.1063/5.0200059 | |
dc.identifier.issn | 2158-3226 | |
dc.identifier.issue | 3 | |
dc.identifier.scopus | 2-s2.0-85188026192 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.1063/5.0200059 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12604/6879 | |
dc.identifier.volume | 14 | |
dc.identifier.wos | WOS:001185731800015 | |
dc.identifier.wosquality | N/A | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | |
dc.publisher | Aip Publishing | |
dc.relation.ispartof | Aip Advances | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.snmz | KA_20241222 | |
dc.title | Comparative study of fractional Newell-Whitehead-Segel equation using optimal auxiliary function method and a novel iterative approach | |
dc.type | Article |