On a Fractional Operator Combining Proportional and Classical Differintegrals
dc.authorid | Fernandez, Arran/0000-0002-1491-1820 | |
dc.contributor.author | Baleanu, Dumitru | |
dc.contributor.author | Fernandez, Arran | |
dc.contributor.author | Akgul, Ali | |
dc.date.accessioned | 2024-12-24T19:33:42Z | |
dc.date.available | 2024-12-24T19:33:42Z | |
dc.date.issued | 2020 | |
dc.department | Siirt Üniversitesi | |
dc.description.abstract | The Caputo fractional derivative has been one of the most useful operators for modelling non-local behaviours by fractional differential equations. It is defined, for a differentiable function f(t), by a fractional integral operator applied to the derivative f ' (t). We define a new fractional operator by substituting for this f ' (t) a more general proportional derivative. This new operator can also be written as a Riemann-Liouville integral of a proportional derivative, or in some important special cases as a linear combination of a Riemann-Liouville integral and a Caputo derivative. We then conduct some analysis of the new definition: constructing its inverse operator and Laplace transform, solving some fractional differential equations using it, and linking it with a recently described bivariate Mittag-Leffler function. | |
dc.identifier.doi | 10.3390/math8030360 | |
dc.identifier.issn | 2227-7390 | |
dc.identifier.issue | 3 | |
dc.identifier.scopus | 2-s2.0-85082432609 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://doi.org/10.3390/math8030360 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12604/8242 | |
dc.identifier.volume | 8 | |
dc.identifier.wos | WOS:000524085900059 | |
dc.identifier.wosquality | Q1 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | |
dc.publisher | Mdpi | |
dc.relation.ispartof | Mathematics | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.snmz | KA_20241222 | |
dc.subject | fractional integrals | |
dc.subject | Caputo fractional derivatives | |
dc.subject | fractional differential equations | |
dc.subject | bivariate Mittag-Leffler functions | |
dc.subject | 26A33 | |
dc.subject | 34A08 | |
dc.title | On a Fractional Operator Combining Proportional and Classical Differintegrals | |
dc.type | Article |