Age Estimation from Left-Hand Radiographs with Deep Learning Methods

dc.authoridOZDEMIR, Cuneyt/0000-0002-9252-5888
dc.authoridGedik, Mehmet Ali/0000-0002-1548-0444
dc.contributor.authorOzdemir, Cuneyt
dc.contributor.authorGedik, Mehmet Ali
dc.contributor.authorKaya, Yilmaz
dc.date.accessioned2024-12-24T19:30:31Z
dc.date.available2024-12-24T19:30:31Z
dc.date.issued2021
dc.departmentSiirt Üniversitesi
dc.description.abstractBone age is estimated in pediatric medicine for medical and legal purposes. In pediatric medicine, it aids in the growth and development assessment of various diseases affecting children. In forensic medicine, it is required to determine criminal liability by age, refugee age estimation, and child-adult discrimination. In such cases, radiologists or forensic medicine specialists conduct bone age estimation from left hand-wrist radiographs using atlas methods that require time and effort. This study aims to develop a computer-based decision support system using a new modified deep learning approach to accelerate radiologists' workflow for pediatric bone age estimation from wrist radiographs. The KCRD dataset created by us was used to test the proposed method. The performance of the proposed modified IncepitonV3 model compared to IncepitonV3, MobileNetV2, EfficientNetB7 models. Acceptably high results (MAE=4.3, RMSE=5.76, and R-2=0.99) were observed with the modified IncepitonV3 transfer deep learning method.
dc.identifier.doi10.18280/ts.380601
dc.identifier.endpage1574
dc.identifier.issn0765-0019
dc.identifier.issn1958-5608
dc.identifier.issue6
dc.identifier.scopus2-s2.0-85123283198
dc.identifier.scopusqualityN/A
dc.identifier.startpage1565
dc.identifier.urihttps://doi.org/10.18280/ts.380601
dc.identifier.urihttps://hdl.handle.net/20.500.12604/7552
dc.identifier.volume38
dc.identifier.wosWOS:000755857700001
dc.identifier.wosqualityQ3
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherInt Information & Engineering Technology Assoc
dc.relation.ispartofTraitement Du Signal
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_20241222
dc.subjectbone age estimation
dc.subjectCNN
dc.subjectcomputer-aided diagnosis
dc.subjectdeep learning
dc.titleAge Estimation from Left-Hand Radiographs with Deep Learning Methods
dc.typeArticle

Dosyalar