1D-local binary pattern based feature extraction for classification of epileptic EEG signals

[ X ]

Tarih

2014

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier Science Inc

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

In this paper, an effective approach for the feature extraction of raw Electroencephalogram (EEG) signals by means of one-dimensional local binary pattern (1D-LBP) was presented. For the importance of making the right decision, the proposed method was performed to be able to get better features of the EEG signals. The proposed method was consisted of two stages: feature extraction by 1D-LBP and classification by classifier algorithms with features extracted. On the classification stage, the several machine learning methods were employed to uniform and non-uniform 1D-LBP features. The proposed method was also compared with other existing techniques in the literature to find out benchmark for an epileptic data set. The implementation results showed that the proposed technique could acquire high accuracy in classification of epileptic EEG signals. Also, the present paper is an attempt to develop a general-purpose feature extraction scheme, which can be utilized to extract features from different categories of EEG signals. (C) 2014 Elsevier Inc. All rights reserved.

Açıklama

Anahtar Kelimeler

1D-local binary patterns, Epilepsy, EEG classification, Feature extraction

Kaynak

Applied Mathematics and Computation

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

243

Sayı

Künye