Recovering source term of the time-fractional diffusion equation
dc.authorid | Weber, Gerhard-Wilhelm/0000-0003-0849-7771 | |
dc.authorid | Yao, Guangming/0000-0002-4819-0101 | |
dc.contributor.author | Partohaghighi, M. | |
dc.contributor.author | Akgul, Esra Karatas | |
dc.contributor.author | Weber, Gerhard-Wilhelm | |
dc.contributor.author | Yao, Guangming | |
dc.contributor.author | Akgul, Ali | |
dc.date.accessioned | 2024-12-24T19:24:55Z | |
dc.date.available | 2024-12-24T19:24:55Z | |
dc.date.issued | 2021 | |
dc.department | Siirt Üniversitesi | |
dc.description.abstract | In this paper, a computational approach is suggested to obtain unknown space-time-dependent source term of the fractional diffusion equations. We assign a time-dependent source term and a linear space with the zero components which represent a series of boundary functions. In linear space, an energy border functional equation is obtained. After that, some numerical examples are provided to verify the accuracy of the method. Also, two tables are presented to display the values of solutions. | |
dc.identifier.doi | 10.1007/s12043-021-02183-0 | |
dc.identifier.issn | 0304-4289 | |
dc.identifier.issn | 0973-7111 | |
dc.identifier.issue | 4 | |
dc.identifier.scopus | 2-s2.0-85114484392 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.uri | https://doi.org/10.1007/s12043-021-02183-0 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12604/6196 | |
dc.identifier.volume | 95 | |
dc.identifier.wos | WOS:001028100900001 | |
dc.identifier.wosquality | Q3 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | |
dc.publisher | Indian Acad Sciences | |
dc.relation.ispartof | Pramana-Journal of Physics | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/closedAccess | |
dc.snmz | KA_20241222 | |
dc.subject | Inverse problems | |
dc.subject | optimisation | |
dc.subject | engineering | |
dc.subject | iterative method | |
dc.subject | fractional diffusion equation | |
dc.subject | energy boundary functions | |
dc.title | Recovering source term of the time-fractional diffusion equation | |
dc.type | Article |