Solution of chemical dynamic optimization systems using novel differential gradient evolution algorithm
Tarih
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
Özet
tOptimization for all disciplines is essential and relevant. Optimization has played a vital role in industrial reactors' design and operation, separation processes, heat exchangers, and complete plants in Chemical Engineering. In this paper, a novel hybrid meta-heuristic optimization algorithm which is based on Differential Evolution (DE), Gradient Evolution (GE), and Jumping Technique (+) named Differential Gradient Evolution Plus (DGE+) is presented. The main concept of this hybrid algorithm is to enhance its exploration and exploitation ability. The proposed algorithm hybridizes the above-mentioned algorithms with the help of an improvised dynamic probability distribution, additionally provides a new shake off method to avoid premature convergence towards local minima. The performance of DGE+ is investigated in thirteen benchmark unconstraint functions, and the results are compared to the other state-of-the-art meta-heuristics. The comparison shows that the proposed algorithm can outperform the other state-of-the-art meta-heuristics in almost all benchmark functions. To evaluate the precision and robustness of the DGE+ it has also been applied to complex chemical dynamic optimization systems such as optimization of a multimodal continuous stirred tank reactor, Lee-Ramirez bioreactor, Six-plate gas absorption tower, and optimal operation of alkylation unit, the results of comparison revealed that the proposed algorithm can provide very compact, competitive and promising performance overall complex non-linear chemical design problems.