Predictive deep learning models for analyzing discrete fractional dynamics from noisy and incomplete data
dc.authorid | Conejero, J. Alberto/0000-0003-3681-7533 | |
dc.contributor.author | Garibo-i-Orts, Oscar | |
dc.contributor.author | Lizama, Carlos | |
dc.contributor.author | Akgul, Ali | |
dc.contributor.author | Conejero, J. Alberto | |
dc.date.accessioned | 2024-12-24T19:26:59Z | |
dc.date.available | 2024-12-24T19:26:59Z | |
dc.date.issued | 2024 | |
dc.department | Siirt Üniversitesi | |
dc.description.abstract | We study the accuracy of machine learning methods for inferring the parameters of noisy fractional Wu-Baleanu trajectories with some missing initial terms. Our model is based on a combination of convolutional and recurrent neural networks (LSTM), which permits the extraction of characteristics from trajectories while preserving time dependency. We show that these approach exhibit good accuracy results despite the poor quality of the data. | |
dc.description.sponsorship | Spanish Ministry of Science and Innovation (MICINN); MCIN/AEI [PID2021-124618NB-C21]; ERDF A way of making Europe; European Union; Agencia Nacional para la Innovacion y del Desarrollo (ANID); CRUE-Universitat Politecnica de Valencia; [1220036] | |
dc.description.sponsorship | JAC acknowledges funding from the Spanish Ministry of Science and Innovation (MICINN) , grant PID2021-124618NB-C21 funded by MCIN/AEI/10.13039/501100011033 and by ERDF A way of making Europe, by the European Union. CL is partially funded by Agencia Nacional para la Innovacion y del Desarrollo (ANID) , under FONDECYT grant number 1220036. We also acknowledge funding for open access charge: CRUE-Universitat Politecnica de Valencia. | |
dc.identifier.doi | 10.1016/j.cjph.2024.04.010 | |
dc.identifier.endpage | 1285 | |
dc.identifier.issn | 0577-9073 | |
dc.identifier.scopus | 2-s2.0-85190886889 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 1276 | |
dc.identifier.uri | https://doi.org/10.1016/j.cjph.2024.04.010 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12604/6435 | |
dc.identifier.volume | 89 | |
dc.identifier.wos | WOS:001233807100001 | |
dc.identifier.wosquality | N/A | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.relation.ispartof | Chinese Journal of Physics | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.snmz | KA_20241222 | |
dc.subject | Dynamical systems | |
dc.subject | Discrete fractional calculus | |
dc.subject | Wu-Baleanu model | |
dc.subject | Logistic map | |
dc.subject | Convolutional neural networks | |
dc.subject | LSTM networks | |
dc.title | Predictive deep learning models for analyzing discrete fractional dynamics from noisy and incomplete data | |
dc.type | Article |