Comprehensive investigations of (Au-Ag/Blood and Cu-Fe3O4/Blood) hybrid nanofluid over two rotating disks: Numerical and computational approach

dc.authoridBasit, Muhammad Abdul/0009-0005-7805-5938
dc.contributor.authorBasit, Muhammad Abdul
dc.contributor.authorFarooq, Umar
dc.contributor.authorImran, Muhammad
dc.contributor.authorFatima, Nahid
dc.contributor.authorAlhushaybari, Abdullah
dc.contributor.authorNoreen, Sobia
dc.contributor.authorEldin, Sayed M.
dc.date.accessioned2024-12-24T19:25:18Z
dc.date.available2024-12-24T19:25:18Z
dc.date.issued2023
dc.departmentSiirt Üniversitesi
dc.description.abstractThe purpose of this work is to investigate the Darcy-Forchheimer flow of a hybrid nano -fluid within two parallel discs. We combine gold Au, silver Ag, copper Cu, and iron oxide Fe3O4 nanoparticles with base fluid blood in this framework. An appropriate similarity variables tech-nique is implemented to transform partial differential systems into ordinary systems. In the results validation section, the numerical result is evaluated using a higher-order precise algorithm (bvp4c), and determined to the analytical result is by making use of the firing approach. Pictorial judgments revealed the estimates of several physical variables that arise over the momentum distribution and thermal distribution profiles. As compared to nanofluid, hybrid nanofluid significantly improves heat transfer rate. The thermal profile is improved when the Brinkman number increases in value. As the porosity parameter is increased, the velocity profile decreases. As the amplitude of the rota-tion parameter increases, so does the pressure profile. The Darcy-Forchheimer medium investiga-tion of a hybrid nano-fluid streaming through the middle of two parallel disks is addressed, taking into account viscous dissipation and heat radiation for various nanoparticles. Additionally, enough agreement is observed when the numerical findings are compared to previously reported and analytical data. As compared to simple nanofluids, hybrid nanofluids have shown higher ther-mal properties and stability, making them attractive candidates for thermal applications such as solar thermal systems, automotive cooling systems, heat sinks, engineering, medical fields, or ther-mal energy storage.(c) 2023 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
dc.identifier.doi10.1016/j.aej.2023.03.077
dc.identifier.endpage36
dc.identifier.issn1110-0168
dc.identifier.issn2090-2670
dc.identifier.scopus2-s2.0-85151435837
dc.identifier.scopusqualityQ1
dc.identifier.startpage19
dc.identifier.urihttps://doi.org/10.1016/j.aej.2023.03.077
dc.identifier.urihttps://hdl.handle.net/20.500.12604/6333
dc.identifier.volume72
dc.identifier.wosWOS:000968190200001
dc.identifier.wosqualityQ1
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherElsevier
dc.relation.ispartofAlexandria Engineering Journal
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_20241222
dc.subjectHybrid nanofluid
dc.subject(Au
dc.subjectAg
dc.subjectCu
dc.subjectBlood base fluid
dc.subjectShooting approach (Bvp4c)
dc.subjectRotating disks
dc.titleComprehensive investigations of (Au-Ag/Blood and Cu-Fe3O4/Blood) hybrid nanofluid over two rotating disks: Numerical and computational approach
dc.typeArticle

Dosyalar