On max-flat and max-cotorsion modules

dc.authoridalagoz, yusuf/0000-0002-2535-4679
dc.contributor.authorAlagoz, Yusuf
dc.contributor.authorBuyukasik, Engin
dc.date.accessioned2024-12-24T19:24:24Z
dc.date.available2024-12-24T19:24:24Z
dc.date.issued2021
dc.departmentSiirt Üniversitesi
dc.description.abstractIn this paper, we continue to study and investigate the homological objects related to s-pure and neat exact sequences of modules and module homomorphisms. A right module A is called max-flat if Tor(1)(R) (A, R/I) = 0 for any maximal left ideal I of R. A right module B is said to be max-cotorsion if Ext(R)(1)(A, B) = 0 for any max-flat right module A. We characterize some classes of rings such as perfect rings, max-injective rings, SF rings and max-hereditary rings by max-flat and max-cotorsion modules. We prove that every right module has a max-flat cover and max-cotorsion envelope. We show that a left perfect right max-injective ring R is QF if and only if maximal right ideals of R are finitely generated. The max-flat dimensions of modules and rings are studied in terms of right derived functors of -circle times-. Finally, we study the modules that are injective and flat relative to s-pure exact sequences.
dc.identifier.doi10.1007/s00200-020-00482-4
dc.identifier.endpage215
dc.identifier.issn0938-1279
dc.identifier.issn1432-0622
dc.identifier.issue3
dc.identifier.scopus2-s2.0-85098789791
dc.identifier.scopusqualityQ1
dc.identifier.startpage195
dc.identifier.urihttps://doi.org/10.1007/s00200-020-00482-4
dc.identifier.urihttps://hdl.handle.net/20.500.12604/5969
dc.identifier.volume32
dc.identifier.wosWOS:000605558800002
dc.identifier.wosqualityQ4
dc.indekslendigikaynakWeb of Science
dc.indekslendigikaynakScopus
dc.language.isoen
dc.publisherSpringer
dc.relation.ispartofApplicable Algebra in Engineering Communication and Computing
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
dc.rightsinfo:eu-repo/semantics/openAccess
dc.snmzKA_20241222
dc.subject(Max-)flat modules
dc.subjectMax-cotorsion modules
dc.subject(s-)pure submodule
dc.subjectSP-flat modules
dc.subjectMax-hereditary rings
dc.subjectQuasi-Frobenius rings
dc.titleOn max-flat and max-cotorsion modules
dc.typeArticle

Dosyalar