EXISTENCE AND STABILITY RESULTS FOR COUPLED SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS INVOLVING AB-CAPUTO DERIVATIVE
dc.contributor.author | Mehmood, Nayyar | |
dc.contributor.author | Abbas, Ahsan | |
dc.contributor.author | Akgul, Ali | |
dc.contributor.author | Abdeljawad, Thabet | |
dc.contributor.author | Alqudah, Manara A. | |
dc.date.accessioned | 2024-12-24T19:29:42Z | |
dc.date.available | 2024-12-24T19:29:42Z | |
dc.date.issued | 2023 | |
dc.department | Siirt Üniversitesi | |
dc.description.abstract | In this paper, we use Krasnoselskii's fixed point theorem to find existence results for the solution of the following nonlinear fractional differential equations (FDEs) for a coupled system involving AB-Caputo fractional derivative ABC(0)D(alpha)??(l) = zeta(l,??(l),P(l)), 1 < alpha & <= 2, (SIC) AB( )C(0)D(sigma)P(l) = xi(l,??(l),P(l)), 1 < sigma <= 2,f or alll is an element of [0, 1], with boundary conditions (SIC) ??(0) = 0, lambda??'(eta) = gamma??'(1), P(0) = 0,lambda'(eta) = gamma'(1).We discuss uniqueness with the help of the Banach contraction principle. The criteria for Hyers-Ulam stability of given AB-Caputo fractional-coupled boundary value problem (BVP) is also discussed. Some examples are provided to validate our results. In Example 1, we find a unique and stable solution of AB-Caputo fractional-coupled BVP. In Example 2, the analysis of approximate and exact solutions with errors of nonlinear integral equations is elaborated with graphs. | |
dc.description.sponsorship | Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia [PNURSP2023R14]; Prince Sultan University | |
dc.description.sponsorship | The authors thank Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R14), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia. The author Thabet Abdeljawad would like to thank Prince Sultan University for the support through the TAS research lab. | |
dc.identifier.doi | 10.1142/S0218348X23400236 | |
dc.identifier.issn | 0218-348X | |
dc.identifier.issn | 1793-6543 | |
dc.identifier.issue | 2 | |
dc.identifier.scopus | 2-s2.0-85150725079 | |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://doi.org/10.1142/S0218348X23400236 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12604/7213 | |
dc.identifier.volume | 31 | |
dc.identifier.wos | WOS:000946360100002 | |
dc.identifier.wosquality | Q1 | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | |
dc.publisher | World Scientific Publ Co Pte Ltd | |
dc.relation.ispartof | Fractals-Complex Geometry Patterns and Scaling in Nature and Society | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.snmz | KA_20241222 | |
dc.subject | Coupled System | |
dc.subject | AB-Caputo Fractional BVP | |
dc.subject | Existence | |
dc.subject | Uniqueness | |
dc.subject | Krasnoselskii's Fixed Point Theorem | |
dc.subject | Banach Contraction Principle | |
dc.subject | Stability | |
dc.title | EXISTENCE AND STABILITY RESULTS FOR COUPLED SYSTEM OF FRACTIONAL DIFFERENTIAL EQUATIONS INVOLVING AB-CAPUTO DERIVATIVE | |
dc.type | Article |