Integrated Catalytic and Energy Storage Performance of Grass Waste Derived Ni-Based Catalyst
[ X ]
Tarih
2024
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Springer Heidelberg
Erişim Hakkı
info:eu-repo/semantics/closedAccess
Özet
This study focuses on the optimization and characterization of a grass waste-derived catalyst, GW-Ni-Cat, for hydrogen generation via NaBH4 methanolysis, as well as its application in supercapacitors. Optimization experiments were conducted to determine the optimal conditions for acid concentration, metal concentration, carbonization temperature, and carbonization time. The catalyst was characterized using various techniques including FTIR, XRD, SEM, TEM, BET, and ICP-OES. Performance experiments demonstrated the catalyst's efficiency in hydrogen generation, with key factors such as catalyst amount, NaBH4 concentration, and temperature influencing the reaction kinetics. Reusability tests showed the catalyst's stability over multiple cycles. Electrochemical characterization revealed the suitability of GW-Ni-Cat as an electrode material for supercapacitors, with high specific capacitance values. Comparison with other bio-based supercapacitors demonstrated the superior performance of GW-Ni-Cat. Overall, this study presents GW-Ni-Cat as a versatile and efficient material for both hydrogen generation and energy storage applications.
Açıklama
Anahtar Kelimeler
Grass waste, Ni-based catalyst, Hydrogen generation, Supercapacitor, Methanolysis
Kaynak
Arabian Journal For Science and Engineering
WoS Q Değeri
N/A
Scopus Q Değeri
Q1