On Solutions of Fractional order Telegraph Partial Differential Equation by Crank-Nicholson Finite Difference Method
dc.contributor.author | Modanli, Mahmut | |
dc.contributor.author | Akgul, Ali | |
dc.date.accessioned | 2024-12-24T19:30:47Z | |
dc.date.available | 2024-12-24T19:30:47Z | |
dc.date.issued | 2020 | |
dc.department | Siirt Üniversitesi | |
dc.description.abstract | The exact solution is calculated for fractional telegraph partial differential equation depend on initial boundary value problem. Stability estimates are obtained for this equation. Crank-Nicholson difference schemes are constructed for this problem. The stability of difference schemes for this problem is presented. This technique has been applied to deal with fractional telegraph differential equation defined by Caputo fractional derivative for fractional orders alpha = 1.1, 1.5, 1.9. Numerical results confirm the accuracy and effectiveness of the technique. | |
dc.identifier.doi | 10.2478/AMNS.2020.1.00015 | |
dc.identifier.endpage | 170 | |
dc.identifier.issn | 2444-8656 | |
dc.identifier.issue | 1 | |
dc.identifier.scopus | 2-s2.0-85085687267 | |
dc.identifier.scopusquality | Q2 | |
dc.identifier.startpage | 163 | |
dc.identifier.uri | https://doi.org/10.2478/AMNS.2020.1.00015 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12604/7685 | |
dc.identifier.volume | 5 | |
dc.identifier.wos | WOS:000664154800015 | |
dc.identifier.wosquality | N/A | |
dc.indekslendigikaynak | Web of Science | |
dc.indekslendigikaynak | Scopus | |
dc.language.iso | en | |
dc.publisher | Walter De Gruyter Gmbh | |
dc.relation.ispartof | Applied Mathematics and Nonlinear Sciences | |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
dc.rights | info:eu-repo/semantics/openAccess | |
dc.snmz | KA_20241222 | |
dc.subject | Fractional order Telegraph Partial Differential equations | |
dc.subject | Finite Difference Method | |
dc.subject | Stability | |
dc.title | On Solutions of Fractional order Telegraph Partial Differential Equation by Crank-Nicholson Finite Difference Method | |
dc.type | Article |