The formation of solitary wave solutions and their propagation for Kuralay equation

[ X ]

Tarih

2023

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

In this paper, the main motive is to mathematical explore the Kuralay equation, which find applications in various fields such as ferromagnetic materials, nonlinear optics, and optical fibers. The objective of this study is to investigate different types of soliton solutions and analyze the integrable motion of induced space curves. This article appropriates the traveling wave transformation allowing the partial differential equation to be changed into an ordinary differential equation. To establish these soliton solutions, the study employs the new auxiliary equation method. As an outcome, a numerous types of soliton solutions like, Periodic pattern with anti-peaked crests and anti-troughs, singular solution, mixed complex solitary shock solution, mixed singular solution, mixed shock singular solution, mixed trigonometric solution, mixed periodic, periodic solution and mixed hyperbolic solution obtain via Mathematica. In order to visualize the graphical propagation of the obtained soliton solutions, 3D, 2D, and contour graphics are generated by choosing appropriate parametric values. The impact of parameter w is also graphically displayed on the propagation of solitons.

Açıklama

Anahtar Kelimeler

Kuralay equation (K-IIE), New auxiliary equation method (NAEM), Analytical solitary wave solutions

Kaynak

Results in Physics

WoS Q Değeri

Q1

Scopus Q Değeri

Q1

Cilt

52

Sayı

Künye